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Abstract—The user interface (UI) of web applications is
usually the entry point of web attacks against enterprises and
organizations. Finding the UI elements utilized by the intruders
is of great importance both for attack interception and web
application fixing. Current attack investigation methods targeting
web UI either provide rough analysis results or have poor
performance in high concurrency scenarios, which leads to heavy
manual analysis work. In this paper, we propose TESEC, an
accurate attack investigation method for web UI applications.
TESEC makes use of two kinds of correlations. The first one,
built from annotated audit log partitioned by PID/TID and
delimiter-logs, captures the correspondence between audit log
entries and web requests. The second one, modeled by an Aho-
Corasick automaton built during system testing period, captures
the correspondence between requests and the UI elements/events.
Leveraging these two correlations, TESEC can accurately and
automatically locate the UI elements/events (i.e., the root cause
of the alarm) from an alarm, even in high concurrency scenarios.
Furthermore, TESEC only needs to be deployed in the server and
does not need to collect logs from the client-side browsers. We
evaluate TESEC on 12 web applications. The experimental results
show that the matching accuracy between UI events/elements and
the alarm is above 99.6%. And security analysts only need to
check no more than 2 UI elements on average for each individual
forensics analysis. The maximum overhead of average response
time and audit log space overhead are low (4.3% and 4.6%
respectively).

Index Terms—attack investigation, web application forensics,
Aho-Corasick automaton, log partitioning

I. INTRODUCTION

For enterprises and organizations, various web services are
often exposed to the outside world, and vulnerabilities in these
services are usually potential entry points for security attacks
[20], [32]. Web applications generally use a browser-server
architecture (B-S architecture) [17]. Users interact with web
pages with a browser, which sends requests to the server and
these requests will be handled by the web server to provide
diverse functions [44]. This interaction model gives intruders
opportunities to launch attacks by sending sophisticatedly
designed request sequence (such as malicious file uploading,
SQL injection, cross-site scripting attacks, etc.). When an
attack is detected and alerted by the intrusion detection system
(IDS), security analysts hope to find the precise attack entry
point (i.e., what request does the intruder send and what UI
element is clicked or used to launch the attack) to accurately
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identify and fix the vulnerability of the web application.
However, existing attack investigation methods cannot achieve
this goal. The main reasons are as follows.

1) The information bridging attacks and UI elements
is missing. Web applications are often composed of front-end
UI and back-end business logic. Intruders use vulnerabilities
to launch attacks. If the intruder interacts with a UI element
to launch an attack, then the UI element is the precise entry
point of the attack. Currently when an attack occurs, what
can be provided to security analysts are simply the processes
related to the attack and the time when the attack occurs. There
is no additional information helping linking the attack and
the UI element. As a result, security analysts have to spend
a lot of time diving into logs to find out the corresponding
vulnerability of the web application. Security analysts prefer
to be told which UI element and what interaction caused the
intrusion, such that they can fix the problem accurately and
quickly.

2) Client-side information acquisition is hard. Intuitively,
we need additional information describing user behavior from
the client PC, if we want to trace back to the UI element.
However, for web application with B-S architecture, client-
side solutions raise serious security concerns. Firstly, it is im-
possible to run information collecting software and forensics
algorithm in the client PC, since it belongs to an intruder.
Secondly, we can not trust the information collected from
the client PC for the same reason – the information may be
manipulated.

3) Server side applications have high concurrency. Web
applications often have high concurrency, since it needs to
respond to a huge amount of requests in a short period of time.
Under this circumstance, the audit log entries generated by dif-
ferent processes/threads/coroutines handling different requests
are often interleaved. Especially, for web frameworks that
use coroutines to handle requests, coroutine-switchings, which
cannot be perceived by neither audit logs and application logs,
will make the logs more confusing and hard to follow. Besides,
many log entries always would have the same timestamp,
which makes timestamps matching based forensics methods
infeasible.

Previous solutions and their problems. For the problem
of accurate attack investigation and auditing of web services,
Bates et al. proposed NPF [5], which can accurately trace the
root cause of common web attacks such as SQL injection and
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ImageTragick. However, it doesn’t record enough information
to trace to the exact UI elements/event which causes the attack.
UIScope [47] is one of the few solutions that can accurately
trace to UI elements using non-instrumentation methods in
recent years. UIScope performs causality analysis on both UI
elements/events and low-level system events, and then per-
forms the initial event based correlation and timestamp based
correlation between system events and UI events. UIScope
runs on the PC side. For our goal, we want to find a server-
side solution. In other words, the forensics analysis algorithm
only needs to be deployed in the web server and there is no
need to collect PC side logs to facilitate the investigation.
UIScope cannot fulfil our goal directly, mainly because: (1)
web applications on the server often receives a large number
of parallel requests, the timestamp based correlation method
cannot solve the log interleaving problem; (2) If the intruder
sets the malicious script to sleep for a period of time before
attacking, the accuracy of the timestamp based correlation
method will significantly drop.

Our solution. Our goal is to propose an attack forensics
method for web services, which (1) can accurately find the
specific UI element/event that causes the alarm from a given
alarm, even in the scenario of log interleaving caused by
simultaneous requests; (2) only needs to be deployed in the
server and does not need PC side logs.

In the paper, we propose TESEC1. In order to find the causal
path from the alarm to the UI element/event, TESEC performs
the following three steps:

1) Training phase. Each UI event generates a series of
network requests. We record the correspondence between UI
elements and request sequences in this training phase. System
testing is leveraged to get these correspondence relations,
since web applications must undergo rigorous tests before offi-
cially released. System testing includes simulating user clicks
(carried out by automated testing tools, such as Selenium
[41]) to cover all functions provided by the web service.
Then, we can store the correspondence relations between UI
elements and request sequences in a database. In order to speed
up the processing speed, we adopt Aho-Corasick automaton
(hereinafter referred to as AC automaton) to model these
relationships.

2) Online running phase. By recording a user’s state in
cookie, it is possible to distinguish the visits to the web
application from different users – different users belong to
different sessions. During the online running phase, we attach
an AC automaton to each session. Once a web server receives
a request, in addition to the original audit log of the operating
system, we add an extra log entry called the delimiter log,
which contains the session ID, process ID, thread ID, times-
tamp, and the current state of the attached AC automaton. This
delimiter will help us partition the existing audit log, thereby
mitigating the log interleaving problem. At the same time,

1TESEC means test+security, because we make full use of the test cases of
the web application to build a security model.

when a request is received, its corresponding session’s current
state of the attached AC automaton is updated accordingly.

3) Attack investigation phase. When receiving an alarm
from the IDS, we first construct a system-level provenance
graph from the audit log, and then find the suspicious web
server related process starting from the alarm in the prove-
nance graph. After that, we find the delimiter log whose
timestamp is closest to the alarm. Then the request sequence,
the session ID and the corresponding AC automaton node
can be obtained naturally. Finally, we get the set of all
possible request sequences and the corresponding set of UI
elements/events using the AC automaton and the correspon-
dence relations database.

Experiments and evaluations. We evaluate TESEC on 12
web applications for performance testing. The experimental
results show that the matching accuracy between UI ele-
ments/events and the alarm entities is above 99.6% in the
case of concurrent requests from 500 threads. We achieve an
average TOP-2 recall of 93.75% and a TOP-4 recall of 100%,
and TESEC find no more than 2 UI elements for each attack
averagely, which means that the security analysts only need to
check at most 4 UI elements and no more than 2 UI elements
on average for forensics analysis. The extra overhead intro-
duced by TESEC is low. In the case of high concurrency of
requests, the maximum overhead of average response time and
average volume of audit log caused by deploying TESEC is
4.3% and 4.6% respectively. TESEC accurately and efficiently
solves the problem of attack investigation in server-side at UI
level of web application with low overhead.

Our contributions:

1) We propose TESEC, an accurate attack investigation
method for web UI applications. TESEC is able to trace
from an alarm event to specific web UI elements/events
automatically. TESEC only needs to be deployed on the
web server and do not need to collect any logs on the PC
side.

2) We design a novel audit log partition technique under
high concurrency to precisely match system calls and
web requests, and use AC automaton to effectively model
the relationship between UI elements and web requests.
These techniques provide both accuracy and visibility for
web attack investigation.

3) Our solution is general. We implement TESEC for
mainstream web frameworks such as Tomcat/Java, Ex-
press.js/Node.js and Asyncio/Python. Furthermore, we
have already made our implementation open source2.

4) To evaluate our method, we perform TESEC on 12 web
applications, including 2 famous open-source projects
and 5 classic vulnerability environments. TESEC achieves
99.6% average accuracy under 500 threads with no more
than 5% runtime overhead and space overhead, which
shows that TESEC effectively traces the web attacks with
visible and accurate results.

2https://github.com/tesec-open/tesec
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II. BACKGROUND AND MOTIVATION

A. Provenance Graph and Forensics Analysis

A provenance graph is a directed graph that represents the
relationship between the subject (process, thread, etc.) and
the object (file, registry, network socket, etc.) in the system,
where the direction of the edge represents the data flow’s
direction [29]. We can record the event e that occurs from
entity u to entity v at time t as (u, v, t), where e is an edge
in the provenance graph. If event e1 = (u1, v1, t1) and event
e2 = (u2, v2, t2) satisfy v1 = u2 and t1 < t2, then we say that
e1 and e2 have a causal relationship [46]. Forensics analysis
[24], [50], [51] is an algorithm that analyzes the origin of an
attack and its impact based on the causal relationship in the
provenance graph. It includes two steps: backward analysis
and forward analysis [18]. Backward analysis can find the
origin of the attack, which starts from a symptom event and
traces back to obtain a causal path based on the timestamp
of the event. The forward analysis algorithm can find a series
of events affected by the attack, and it often uses the nodes
found by the backward analysis as the entry points.

B. Threat Model

TESEC focuses on attack investigation on the server-side
to protect the enterprises or organizations from web attacks.
Our attack scenario is that, the back-end of web application
(such as a website) is deployed on a server, and attackers
intrude the server by exploiting some vulnerabilities in the
website. During the process, vulnerabilities such as arbitrary
file uploading, arbitrary code execution, and SQL injection are
widely exploited by attackers. The entrances of these kinds of
attacks are the normal pages provided by the website, that is,
benign users can normally access these functions through the
browser, while hackers can also use these vulnerable interfaces
to launch attacks.

Note that the victim of our attack scenario is the owner of
web applications (mostly enterprises or organizations). Attacks
to PCs are not considered in our threat model nor attack
scenario, for example, using water-hole attack or phishing
skills to damage a PC.

We assume that the underlying OS has built-in audit
mechanisms that generates audit logs, which should record
PID/TIDs3, and TESEC can insert custom log entries (e.g.
Procmon for Windows, and auditd for Linux). We assume
that application logs, audit logs, and operating systems are
part of the trusted computing base. We also assume that the
code of the TESEC system we deploy will not be tampered
with by attackers. These assumptions are commonly used in
log-based attack investigation methods, such as UIScope [47],
Alchemist [48], etc., and there are some common approaches
[40] [6] [36] to ensure them.

3Linux auditd does not record TIDs by default, so we apply a modification
to support it. The details are discussed in Appendix A.

C. Motivating Example

Alice is a security expert for a large enterprise that has
more than 10 websites. One day, Alice received an alarm
from the IDS and found that a malicious file appeared on the
Intranet. Alice quickly began to trace the source of the attack.
The traditional analysis procedure is shown in the upper part
of Figure 1. By observing the provenance graph generated
by the system log, she traced to a process with pid = 279
from the read and write operations of the malicious file. She
found that 279 was the PID number of web1.com belonging
to the enterprise. But when she wanted to continue to trace
back to the source, she encountered difficulties. Because
process 279 connected too many web requests and IPs, she
couldn’t determine through what IP and which web request of
web1.com the intruder uploaded this malicious file (as shown
in Figure 1, Difficulty 1: how to locate the suspicious web
request from the audit log of malicious events). So she
found Bob, the person in charge of the website, who urgently
took the website offline and started checking the web request
records of the website. After a lot of works, Bob roughly
located 5 file upload points that may cause the attack. He
immediately tested these file upload points, and finally found
that the intruder leveraged the avatar uploading function and
uploaded a malicious script (as shown in Figure 1, Difficulty
2: how to locate the suspicious web UI element from the
suspicious web requests). Several days had passed when Bob
fixed the bug and re-launched the website, and the downtime
of the website had brought great losses to the company.

TESEC aims to provide a fast and accurate tracing method
for locating web application vulnerabilities. It can start from
the provenance graph constructed by audit logs, trace the
source to the related web request, and find out what UI
element/event caused the alarm. In the above example, if Alice
uses TESEC, she can immediately inform Bob that it is the
avatar upload function of web1.com that caused the problem,
so that Bob can focus on troubleshooting this function and
quickly fix the vulnerability, thereby reducing the number of
downtime caused by the vulnerability and avoiding the loss to
the company (as shown in the lower part of Figure 1).

III. SYSTEM DESIGN

A. System Design Overview

The workflow of TESEC is divided into three phases (shown
in Figure 2):

1) Training phase. In the training phase, TESEC aims
to establish the relationship between the UI events and the
sequences of web requests they generates. To achieve this goal,
we collect integrated test cases for web applications, which are
written in common testing frameworks such as Selenium.
During the execution of these test cases, whenever we perform
a UI event, we actively add a separator-log entry to distinguish
the request sequence generated by the UI event and obtain
annotated requests logs. In order to facilitate pattern matching
during forensics analysis, we use AC automaton to model the
relationship between UI events and request sequences, and
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Fig. 1. Motivating example.

store the matching relationships in the AC Automaton based
Relation DB.

2) Online running phase. To use the service provided by
a web application, a user will interact with a web browser and
perform real browsing activities, so that the server will receive
requests sent by the browser. During the online running phase,
for each user, TESEC attaches an AC automaton to its session.
When receiving a request, TESEC will insert an extra log
entry (i.e., delimiter log) into the audit log of the OS, which
contains session ID, process ID, thread ID, timestamp, and the
current state of the attached AC automaton. This log entry will
help TESEC to partition the existing audit logs. After inserting
these delimiter-logs, TESEC obtains the Annotated Audit Log.
For each session, TESEC will online maintain its node state
of the attached AC automaton through the Proxy/Middleware
deployed on the server.

3) Attack investigation phase. When an alarm event is de-
tected by the IDS, TESEC aims trace to the specific request and
match the possible UI events. Attack investigation phase thus
consists of two parts, which are Event-Request Investigation
and Request-UI Investigation. In the first part, using Malicious
Request Analyze, TESEC analyzes the Annotated Audit Log
obtained in online running phase, and find the delimiter log

(inserted in the online running phase) whose timestamp is clos-
est to the Alarm Event. TESEC records its related information,
including the session ID and the corresponding AC automaton
node. In the second part, from this Malicious Request and its
node state in AC automaton, TESEC finds all possible web
request sequences. After obtaining these sequences, TESEC
finally locates the Possible List of UI Elements by querying
the AC Automaton based Relation DB.

In the workflow of TESEC, there are two key problems (also
illustrated in the motivating example):

1) How to find the corresponding web request from a
suspicious system call in the audit log?

2) How to locate the UI elements/events from the web
request found in the first problem?

We describe our method in detail in Section III-B and
Section III-C respectively.

B. Finding the Network Request from an Audit Log Entry

As mentioned in Section I, there are two difficulties with
this problem: (1) The information bridging attacks and UI
elements is missing and (2) log interleaving caused by multi-
process/thread/coroutine mechanism4.

For the first difficulty, we insert a custom entry in the audit
log, which records the identifier of the backend request (we
will explain the details of the identifier in III-C). We call this
log entry a delimiter-log. For the second one, after studying
common concurrency mechanism of web applications, we pro-
pose a method that can accurately divide the audit log entries
corresponding to different requests under high concurrency, so
as to achieve the accurate matching between backend requests
and audit log entries.

There are currently two main concurrency mechanisms:
multi-process/thread based and coroutine based, which are
implemented in kernel mode and user mode respectively.

1) Multi-process/thread: For a web application that uses
a process pool or a thread pool to handle requests, each
process/thread in the pool will sequentially process some
requests. When a process/thread finishes processing a request,
it will process the next request sequentially. For these requests
processed by the same process/thread, the syscalls they trigger
will be recorded in audit log sequentially. Hence, we can use
the PID and TID to partition the interleaved audit log.

To introduce high-level information, we add a middleware to
the web application, so that each worker process/thread would
insert a delimiter-log to audit log before starting to process
the request. Therefore, when tracing from an audit log entry,
we can find the nearest delimiter-log with the same PID/TID,
and then the high-level information about the backend request
can be acquired.

Since we partition the audit log (including the delimiter-
logs) entries based on PID/TID, it does not matter how the

4Figure 3 is an example of Linux auditd logs generated when 4 requests are
received. As can be seen, although requests 1∼4 were received in sequence,
the syscalls triggered when processing them are interleaved. Therefore, we
cannot use a simple timestamp comparison method to find the network request
from an audit log entry.
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Fig. 3. Interleaving of logs under high concurrency.

audit log entries from different processes/threads interleave
with each other. The order of audit log entries from the
same process/thread is ensured by the underlying OS audit
mechanism.

Our modification to the web application is very lightweight.
For multiple widely-used backend frameworks, it works like
a plugin and there is no need to modify the source code. For
implementation details, please refer to Section IV.

Essentially, we use the PID/TID recorded in the audit log
to divide multiple requests under high concurrency, which
allows us to avoid actively tracking process/thread switching.
However, for the coroutine mechanism, we do not have this
tricky way.

2) Coroutine: Coroutine is similar to lightweight threads,
allowing execution to be suspended and resumed. It has the
characteristics of less scheduling and low system overhead.
With coroutine mechanism, a web application process/thread
may switch multiple times when processing requests, which
allows it to handle incoming requests not one by one, but to
process multiple requests concurrently in a period of time.
Since coroutine switching is a user-mode behavior, audit log
does not record this action, so there is no mechanism like
PID/TID for us to track the coroutines’ behavior.

As a kernel-mode structure, the scheduling of processes and
threads is controlled by the operating system. Because the

PID=201
Request A

PID=201
Request B Anno tated Audig  Logs

Coroutine Switch to  B

Coroutine Switch to  A

SYSCALL=open REQUEST=A

SYSCALL=read REQUEST=A

SYSCALL=send REQUEST=A

SYSCALL=404  a0=B (Delimiter- Log)

SYSCALL=write  REQUEST=B

SYSCALL=open REQUEST=B

SYSCALL=receive  REQUEST=B

SYSCALL=404  a0=A (Delimiter- Log)

SYSCALL=exe  REQUEST=A

SYSCALL=fork REQUEST=A

SYSCALL=send REQUEST=A

*a0 is the first parameter o f a syscall

Fig. 4. Delimiter-logs Inserted when Coroutine Switching Occurs.

operating system needs to ensure fairness between different
processes and threads, some strategies such as Round-Robin
are used to switch continuously. However, as a language-level
structure, coroutine has a small switching overhead, and the
scheduling of the coroutine is often non-preemptive. Corou-
tine switching occurs only when the coroutine encounters a
blocking and voluntarily gives up the right to execute. So it is
acceptable for us to actively track the coroutine switching.

As shown in Figure 4, TESEC instrumented the web appli-
cation to make it inserts a delimiter-log every time a coroutine
switching occurs. After partitioning audit log based on PID,
considering the audit log entries with the same PID, with the
help of the delimiter-logs we inserted, it can be seen that the
log entries with same background color belong to the same
web request. Similarly, our modification to the web application
is very lightweight. Many widely-used backend frameworks
with coroutine mechanism are based on interpreted language,
so there are some tricks can be used to avoid modifying the
original code. For the specific implementation, please refer to
Section IV.After getting annotated the audit logs (i.e., audit logs
after inserting delimiter-logs), TESEC manages to match the
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Algorithm 1: Matching Web Request
Input : logs is the array of auditd log.
Output : requests is a key-value map of log and the identifier of

its matched request.
Variable: latestRequest - A key-value map of PID and its

corresponding request identifier.

1 function MATCHREQUEST(logs)
2 for log ∈ logs do
3 if log is a delimiter-log then
4 latestRequest[log.pid]← log.identifier
5 end
6 requests[log]← latestRequest[log.pid]
7 end
8 return requests

network requests with the audit log entries. For each audit log
entry to be traced, we find the nearest delimiter-log before
it with the same PID/TID, which records the identifier of a
backend request. As shown in Algorithm 1, for the whole
audit log, we only need to scan for one time, and maintain
the information of the latest delimiter-log of each PID/TID
during the scanning process, so that the backend request
corresponding to each audit log entry can be determined with
linear time complexity.

C. Matching between Network Requests and UI ele-
ments/events

Once we get the malicious request, we need to find out
which UI element/event triggers this request. For example,
as shown in Figure 5, we have identified the malicious
request (i.e., the last request “GET /article/query”) and got
the request sequence. However, it is not straight forward to
locate the UI elements, since there are possible candidates:
the UI event 1 “Open an Article” and the UI event 2
“User Login” both are feasible solutions. The request and
UI element/event correlation problem can be stated as
follows: Given (1) a set of UI element/event - request
sequence pairs P = {p|p.element is a UI element ∧
p.s is the request sequence triggerred by p.element},
which models the fact that a UI element/event may generate a
request sequence, and (2) for a request sequence S, the set of
its all non-empty suffixes: Suf = {S[left · · ·L − 1]|left ∈
[0, L − 1],where L is the length of S}, which models the
last few characters that may belong to a UI element/event.
We need to find all possible UI elements/events R ⊆ P such
that for each r ∈ R, one of the prefixes of r.s is in Suf , in
other words, a prefix of r.s is a suffix of S.

This is a classic multi-string matching problem that can
be solved using the Aho-Corasick Automaton [1], which is
a mature and efficient solution to this problem [25]. AC
automaton combines multiple pattern strings to build a tree
with returned edges, which is beneficial to reduce the time
and space complexity required for string matching [34].

Taking the patterns a, ab, bab, bc, bca, c and caa for
example, the AC automaton constructed by them is shown
in Figure 6 (a). The yellow dotted edge represents the fail
pointer. If all the yellow edges are removed, this is a standard

GET /artic le/count

GET /artic le/query

GET /user/status

POST /user/add

POST /user/logout

POST /user/log in

GET /artic le/count

GET /artic le/query

Possible  UI Action 1:
Open an Artic le

Possible  UI Action 2:
User Log in

Request sequence

Fig. 5. An example of possible UI elements.

Trie. A node colored in blue indicates that a string ends with
this node (that is, the path from each blue node to the root
node corresponds to a pattern string).

Given a string cabca, we want to figure out which patterns
are prefixed with one of its suffix. During the running phase
shown in Figure 6 (b), AC automaton receives this string
character by character. Starting from the root node, if there
is a transition edge of the current character, then jump to
the corresponding connected node. After two transitions, the
current node has no outgoing edge with b, so that it will keep
jumping up along the fail edges, until it has a transition edge of
this character. So it will reach the node that connected with the
root node by a, and then transit along the edge of b. Similarly,
it will jump up for one time to reach a node that has outgoing
edge with c, and then make a transition. It finally reaches the
START position in Figure 6 (c).

To locate all the possible patterns, during the query phase as
shown in Figure 6 (c), from the last node (node A), we need
to keep jumping up along the fail edges until the root node,
and mark all the nodes passed as well as nodes in their sub-
trees. The blue solid and marked nodes are all possible patterns
(node A: bca, B: caa, C: a and D: ab in this example). The
detailed algorithm is shown in Algorithm 2.

Algorithm 2: Finding Possible Patterns
Input : node is the node that we want to trace from.
Variable: N.childs - A key-value map of characters and child

nodes of a node N .
N.fail - Fail pointer of a node N .
N.mark - Is node N marked?

1 function UITRACE(node)
2 while node ̸= root do
3 MARKSUBTREE(node)
4 node← node.fail
5 end
6 function MARKSUBTREE(node)
7 if node.mark then
8 return
9 end

10 node.mark ← True
11 for ch, child ∈ node.childs do
12 MARKSUBTREE(child)
13 end

In order to make use of AC automaton, we embed AC
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Fig. 6. An example for AC automaton.

automaton into TESEC’s 3 phases.
1) AC automaton Construction Phase: During this phase,

we first need to get the UI element/event - request sequence
pairs, and then construct an AC automaton based on the pairs.

Since a web application that conforms to the software
engineering standards needs to be tested sufficiently before it
is officially deployed, there are a large number of integration
test cases covering all the functions of the web application. We
can fully collect and use these test cases to simulate normal UI
events, and hence get the UI element/event - request sequence
pairs.

Testers generally use automated testing tools like
Selenium to test the UI of the application. By writing
code, testers interact with the UI, simulating real user’s
usage. Taking Selenium as an example, each interactive UI
element on the page is an object instance in the test code.
When the tester calls the method of the instance, such as
“click”, the browser will automatically respond accordingly,
possibly sending a series of consecutive web requests to the
server.

TESEC builds a proxy server for the backend, which will
automatically forward the received requests to the real backend
server. TESEC will respond to special commands in the header
of request, as shown in Table I. When a tester calls a method,
a stop command is firstly sent to stop recording the backend
request corresponding to the previous UI element, and then
a start command is sent to indicate that a new UI element
has started to interact. When all UI elements are tested, a
finish command is sent to indicate that the test is completed.
For example, in our implementation, we only encapsulate the
related methods of Selenium, and do not need to change the
test code, so it can be implemented without instrumentation.

As shown in Figure 7, besides the original requests (in
blue and red boxes), the proxy server also inserts several
information in between, which stores the UI element/event
name and marks the begin and end of the request sequence
provoked by the the UI element/event.

Through the above steps, we have obtained the UI elemen-
t/event - request sequence pairs. Then we construct a AC
automaton from these pairs. In the process of construction,

GET /artic le/count

GET /artic le/query

GET /user/status

POST /user/add

UI element started (inserted by TESEC)

UI element ended (inserted by TESEC)

UI element started (inserted by TESEC)

UI element ended (inserted by TESEC)

POST /user/logout

UI element started (inserted by TESEC)

UI element ended (inserted by TESEC)

UI Action 1: 
Open an artic le

UI Action 2:  
Add an user

UI Action 3:  
Logout

Fig. 7. Workflow for TESEC in model construction phase.

TABLE I
TESEC’S REACTION TO COMMANDS

Command Reaction
start Start recording backend requests
stop Stop recording backend requests

finish Terminate recording requests and build AC automaton

we treat each request as a character and request sequence as a
string, so we follow the standard AC automaton construction
steps for construction. The brief construction steps are as
follows:
• For all string ti, where i is a positive integer not exceeding
train num, build a Trie.

• Add a fail pointer to each node in the Trie. For a node i on
the Trie, all the edges traversed on the path from the root
node to it constitute a string Si. The fail pointer of node i
points to node j if and only if j is the node with the largest
length of Sj among all the nodes in the Trie except node i,
such that Sj is the suffix of Si. See Algorithm 3 for details
on how to construct fail edges.
The AC automaton can be used for matching and querying.

It includes the request sequence corresponding to all normal
UI events of web application, and we will use it for subsequent
investigation.
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Algorithm 3: Building Fail Pointers for AC Automa-
ton

Input : node is the root of the subtree where we want to build
fail pointers.

Variable: N.childs - A key-value map of characters and child
nodes of a node N .
N.fail - Fail pointer of a node N .

1 function BUILDFAIL(node)
2 for ch, child ∈ node.childs do
3 failNode← node
4 while failNode ̸= root do
5 if ch ∈ failNode.childs then
6 child.fail← failNode.childs[ch]
7 break
8 end
9 failNode← failNode.fail

10 end
11 if failNode = root then
12 child.fail← root
13 end
14 BUILDFAIL(child)
15 end

2) Running Phase: We attach an AC automaton to each
session. During the running phase, we make AC automaton
state transition according to the request the web server receives
and store the node ID of the current state of the AC automaton.
The state transition algorithm of an AC automaton is as
follows:

• If the current node has an outgoing edge of the character,
then transfer to the corresponding child node.

• If the current node does not have an outgoing edge of the
character, then jump up along the fail pointer until there
is an outgoing edge of the character, and transfer to the
corresponding node.

• If there is still no outgoing edge of the character after
jumping to the root node, then transfer to the root node.

For each network request, a transfer on the automaton will
occur. Obviously, the worst time complexity is O(d), where d
is the depth of the Trie; using an analysis method similar to
the KMP algorithm, we can know the average time complexity
of each transfer is O(1). And we know that the depth of the
Trie can be regarded as a small constant, so it will not have
a significant overhead on the system, which can be verified
in the experimental part that follows. If a backend request
arrives and the node is moved to the root node, it means that
the backend request cannot match any UI element, it may be
a backend request that does not conform to the UI logic and
sent by a script, so we will block this request.

To record the node ID corresponding to each request, we
used the delimiter-log inserted in the Section III-B, each of
which corresponds to a request. Because we know the au-
tomaton node ID corresponding to the request in this section,
we can just set the request identifier in the delimiter-log to the
corresponding automaton node ID. In this way, we can record
the automaton node information of each request in the audit
log and system-level provenance graph without adding extra
overhead, so as to facilitate subsequent investigation steps.

3) Query Phase: During the query phase, what we have
gotten are:

• a request sequence ended with a malicious request
• the AC automaton corresponding to the session of the

request
• the current node ID of the AC automaton
Then we can use the query function of AC automaton, such

as the example in Figure 6 (c), to get all the possible UI
elements/events.

IV. IMPLEMENTATION DETAILS

A. Training Phase

We use a monkey-patch-like5 approach [39] to change the
behavior of some functions in Selenium, as a testing tool to
execute test code in the training phase. In training phase, the
proxy server is implemented in Flask.

B. Online Running Phase

1) Audit Log Sources: For Linux we use auditd as the
audit log source, while for Windows we use Process Monitor
(Procmon).

2) Delimiter-Logs Insertion Mechanisms for Different Op-
erating Systems: The mechanisms to insert delimiter-logs in
Linux and Windows are different:
• Auditd (Linux). TESEC calls a non-existent syscall with a

fixed number6 to insert a delimiter-log into the audit log.
Since auditd will record the parameters of a syscall, we
could record more information such as the node id of the
AC automaton in its first parameter (a0).

• Procmon (Windows). TESEC inserts a Profiling Events
of operation type “Debug Output Profiling” to insert a
delimiter-log into the audit log. Because procmon will
record the “Detail” filed of this type of event, we could
record the same information as auditd in this field.
Both mechanisms can be easily implemented in C++. For

programming languages other than C++, such as Java, Node.js,
Python, which are used in our evaluations, since they all have
the ability to import C++ code, the above two mechanisms
can be implemented naturally.

3) When and How to Invoke the Insertions for Mainstream
Web Frameworks: In this part, we show when and how
to invoke the above delimiter-log insertion for mainstream
web frameworks such as Tomcat/Java, Express.js/Node.js and
Asyncio/Python. Since current mainstream web frameworks
often provide sufficient interfaces, leveraging which TESEC
can invoke the insertion operations in a elegant and plugin-
like way without modifying the source codes.
• Tomcat (Multi-process/thread). Tomcat [45] is a web

server where web applications written in Java can be
deployed. We use its “filter” mechanism to invoke the
insertion. Each filter has a matching rule. If the request
path hits the matching rule of a filter, the thread processing
the request will call the filter first, and then execute the

5Dynamically replace methods or properties at runtime.
6In this paper, we choose 404.
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Fig. 8. An example of Attack investigation algorithm.

corresponding processing function. Throughout the process,
the TID is constant. Therefore, TESEC could utilize a filter
to invoke the insertion.

• Express.js (Coroutine). Express.js [7] is based on
Node.js, which inherently uses coroutines. In fact,
Node.js provides the library async hooks to facilitate
tracking asynchronous events. We only need to filter out
the coroutine switching events not related to the request,
and then we can use the callback function provided by
async hooks to invoke the insertion.

• Asyncio (Coroutine). For Python’s Asyncio module, we
can use its built-in loop.set task factory function to modify
the default behavior of creating coroutine tasks. When a
coroutine task is created, TESEC encapsulates the corou-
tine with a subclass of asyncio.coroutines.CoroWrapper for
debugging, and overload its send method to invoke the
insertion.

C. Attack Investigation Phase

We summarize the complete attack investigation steps of
TESEC with an example in Figure 8. Starting from an alarm
event provided by IDS, the detailed work flow is as follows:

1) We use SPADE to construct provenance graphs from
collected server-side audit logs7. In the provenance graph, we
start from the malicious file and trace back until reaching a
process corresponding to the web application (i.e., web server)
that caused the uploading of the file. Hence, we get the

7TESEC uses SPADE [9]–[11] to obtain a system-level provenance graph.
SPADE is an open-source provenance graph generation tool, which converts
Linux auditd logs or Windows ETW logs into a standard-format provenance
graph. Using the provenance graph provided by SPADE, we can trace from
the alarmed entity (such as some Trojan files uploaded using web application
vulnerabilities) to the corresponding entity of the web server process of
the invaded web application. For example in Figure 1, given the malicious
node “trojan.sh” we can find the process node with pid = 279 from the
provenance graph.

malicious audit log, which is related to the malicious file
uploading action.

2) With the help of the precise log partition, TESEC starts
from the malicious audit log entry, and finds the latest
delimiter log inserted by TESEC in the audit logs. From the
delimiter log, TESEC further finds the web request that is
highly relevant to the uploading action of the malicious file.

3) TESEC has already collected test cases covering all the
web functions to build the AC automaton, which captures the
relation between a UI element/event and its corresponding
web request sequence, in the training phase. Once given the
web request and the current state of the AC automaton, we
can query the AC automaton to find all the possible request
sequences and their corresponding UI events as well.

After the above steps, we have identified all UI ele-
ments/events that could lead to this attack. Finally, we inform
security experts of these UI events that may be related to the
vulnerability, helping them quickly locate and fix the problem.

V. EVALUATION

We designed experiments to answer the following questions:
1) How accurately can TESEC perform entity matching in

the case of high concurrency of requests and interleaving of
logs? (Section V-B)

2) During an attack investigation, from the suspicious audit
log entries, how accurately can TESEC find the corresponding
UI elements? (Section V-C)

3) Compared with the timestamps based correlation method,
how much improvement does TESEC have in the matching
result? (Section V-D)

4) If an attacker deliberately rejects all cookies, how this
impacts the accuracy of the investigation ? (Section V-E)

5) What are the runtime and space overhead of TESEC when
deployed in real-world environments? (Section V-F)

A. Experiment Setup

Linux server we used for experiments has an Intel Xeon
Platinum 8361HC CPU 2.60GHz and 8GB RAM, running
Ubuntu 18.04.4. Windows server we used has an Intel Core
i7-8565U CPU 1.80GHz and 16GB RAM, running Windows
10. In order to test the performance of TESEC, as shown in
Table II and III, we designed 12 web application scenarios,
and conducted several experiments in each scenario. In order
to obtain the annotated audit log, different implementations
are required for different backend frameworks.

We implemented TESEC for the following frameworks:
1) ASGI framework (a Gateway Interface in Python).

It is suitable for backend frameworks that use
Python’s Asyncio module, including Starlette
[43], FastAPI [8] and Aiohttp [3]

2) Tomcat (a web server for deploying Java web appli-
cations)

3) Express.js (a backend framework in Node.js).
The implementation details are described in Section IV.
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TABLE II
BASIC INFORMATION OF WEB APPLICATIONS

App
Name

Backend
Framework What to Test OS Number of

Backend APIs

App 1 FastAPI
Investigation effect

& Performance Linux 5

App 2 FastAPI
Investigation effect

& Performance Linux 13

App 3 Express.js Investigation effect Linux 42
App 4 Flask Investigation effect Linux 24
App 5 Aiohttp Investigation effect Linux 11

App 6 Tomcat
+ Springboot

Investigation effect Windows 64

App 7 Express.js Investigation effect Linux 18

TABLE III
COMMON VULNERABILITY ENVIRONMENT

App name Weakness Source Language
App 8 Deserialization CVE-2021-44228 Java
App 9 Injection CVE-2021-21315 Node.js

App 10 XML eXternal Entity XXE-LAB Python
App 11 Broken Access Control CVE-2016-4437 Java
App 12 Type Conversion CVE-2017-8291 Python

Some basic information about App 1-7 are given in Table
II and detailed descriptions are in Appendix B.

App 8-12 are all environments from Proof of Concept (POC)
to common vulnerabilities, and can be used to evaluate the
accuracy of attack investigation in real environment. Details
about these 5 applications are described in Appendix C.

B. The Accuracy of Entity Matching

TESEC contains two kinds of entity matchings. The first
one is the matching between audit log entries and backend
requests, and the second one is the matching between backend
requests and UI elements. We evaluate them separately.

1) Can audit log entries be correctly matched with backend
requests?: In this section, we evaluate whether TESEC can
correctly match audit log entries with web requests.

We modified App 1 to record the matching information
between syscalls and web requests at runtime. App 1 has
3 backend APIs corresponding to file reading, modification
and deletion operations respectively with the filename that it
operates on as the parameter. For file reading and modification
operations, the open syscall and the filename will be recorded
in the auditd log; for file deleting operations, the unlink syscall
and the filename will be recorded. Hence, the correspondence
between audit log entries (i.e.,open, unlink syscalls) and web
requests can be simply derived using the filename. In this way
we get the ground-truth.

We use 10, 100, and 500 threads to concurrently initiate
access to App 1, and then evaluate the matching accuracy.
Table IV shows the results. Since the web requests and syscalls
of App 1 are one-to-one, the accuracy and recall are the same.
It can be seen that in the case of high concurrency of requests
and interleaving of logs, the matching accuracy is still higher
than 99%. The reason why the accuracy is less than 100%
is that: auditd may lose audit log entries in the case of high
throughput, so that some 404 syscalls cannot be successfully
written to auditd, and matching failure occurs. In other words,

if there is no loss of auditd log entries, then both the accuracy
and recall should be 100%.

TABLE IV
MATCHING RESULT OF BACKEND REQUESTS AND AUDIT LOG ENTRIES

(APP 1)

Concurrent
Threads Number

Request
Number File Syscall Number Correct Number Accuracy Recall

10 3537 2566 2566 100% 100%
100 35081 25063 25046 99.93% 99.93%
500 289781 122879 122436 99.64% 99.64%

Using the same method as above, we evaluated the matching
accuracy between backend requests and audit log entries for
App 6 and 7. App 6 is deployed in Windows with Procmon
to monitor its behavior, while App 7 is deployed in Linux with
auditd. As shown in table V, the matching results for them
are perfect as expected.

TABLE V
MATCHING RESULT OF BACKEND REQUESTS AND AUDIT LOG ENTRIES

(APP 6,7)

App Concurrent Threads Number Syscall Number Accuracy Recall
App 6 500 300000 100% 100%
App 7 500 300000 100% 100%

2) Can web requests be correctly matched with UI ele-
ments?: TESEC may find several UI elements when matching
with web requests. In this section, we use App 2-5 to find out
how many UI elements in general that TESEC would finds in
real applications.

To evaluate the recall of matching, we let 5 users to use
Selenium script to randomly access the website, and record
the UI elements used. The experiment lasts for 20 minutes and
generates many backend requests. We record the numbers of
UI elements traced back from the backend request using our
algorithm. The results are shown in Figure 9 and Table VI.
For all applications, the average TOP-1 recall is 74%, and the
average TOP-2 recall is 93.75%. This means that the number
of UI elements is less than 2 in most of the cases (shown in
Table VI). In other words, TESEC greatly reduces the analysis
scope and workload of security analysts.

TABLE VI
AVERAGE NUMBER OF UI ELEMENTS MATCHED BY THE WEB REQUESTS

Application App 2 App 3 App 4 App 5
Average number of UI elements 1.46 1.66 1.04 1.08

C. Attack Investigation Accuracy

In this section, we evaluate the accuracy of attack investi-
gation from audit log entries to UI elements.

We planted several vulnerabilities in Apps 2, 4 and 5, and
attempted to find the UI elements from syscalls caused by the
vulnerabilities. In this experiment, 5 users used Selenium
script to randomly visit the website of Apps 2, 4 and 5
normally, and record the interactive UI elements. For each
application, the experiment lasted for 20 minutes, while the
attacker used the vulnerability to do file operations. We

2808

Authorized licensed use limited to: Tsinghua University. Downloaded on October 31,2025 at 11:15:49 UTC from IEEE Xplore.  Restrictions apply. 



0 1 2 3 4
number of UI element matches

0

20

40

60

80

100

pe
rc

en
t o

f r
eq

ue
st

s (
%

)

52%

90%

100%

56%

85%

93%

100%
96%

100%

92%

100%

App 2
App 3
App 4
App 5

Fig. 9. Cumulative graph of the number of UI elements matched by the web
requests.

added the following vulnerabilities: (1) Arbitrary Command
Execution Vulnerability. The attacker modifies files at spec-
ified locations through this vulnerability. (2) Arbitrary File
Upload Vulnerability. The attacker modifies files at specified
locations through this vulnerability. (3) Arbitrary File Read
Vulnerability. The attacker reads the specific file through this
vulnerability.

As shown in Table VII, vulnerability-related syscalls are
matched accurately to the vulnerability-related UI element.

In order to evaluate our method for real application with
vulnerabilities, we used 5 applications from public POCs
to common vulnerabilities. We attacked the applications as
described in POCs several times and attempted to find the UI
elements from the audit log entries generated by the attack.
We refer to Owasp Top-10 2017 [35] to select the types of
these vulnerabilities. In a word, for all applications, TESEC
can always uniquely and correctly find the corresponding UI
elements. The details of each application are described in
Appendix C, and Figure 10 contains the provenance graphs
of each application.

TABLE VII
COMPLETE INVESTIGATION OF ATTACK

Application Vulnerability Type Number of
Requests Accuracy Recall

App 2
Arbitrary Command Execution 102 100% 100%

Arbitrary File Upload 100 100% 100%
Arbitrary File Read 106 100% 100%

App 4
Arbitrary Command Execution 236 100% 100%

Arbitrary File Upload 221 100% 100%
Arbitrary File Read 254 100% 100%

App 5
Arbitrary Command Execution 232 100% 100%

Arbitrary File Upload 243 100% 100%
Arbitrary File Read 216 100% 100%

D. Comparison with Timestamp Matching-based Method

UIScope uses timestamps to match system-level and UI-
level logs. However, in the high concurrency scenario of web
services, audit logs will be interleaved, so it is difficult to
match them directly by timestamps.

Similar to Section IV.B, we use App 1 to evaluate the
accuracy of matching between web requests and UI elements.
We designed two scenarios. In one scenario, App 1 sleep for
a random time interval while processing each request and in
the other scenario App 1 directly process each request without
sleeping.

The results are shown in Table VIII. It can be found that in
the case of high concurrency of requests, the accuracy of direct
timestamp comparison method greatly dropped. Comparing
with the results in Table IV, the accuracy and recall of
TESEC is still over 99%, which shows that TESEC has a huge
advantage compared with timestamp matching-based method.

TABLE VIII
MATCHING RESULT OBTAINED BY DIRECT TIMESTAMP COMPARISON

METHOD

Concurrent Threads
Number

File Syscall
Number

Correct
Number Accuracy Recall

Sleep for Random
0-5s per Request

50 6223 1166 18.74% 18.74%
100 12380 2125 17.16% 17.16%
500 62348 7973 12.79% 12.79%

No Sleep
50 6057 5714 94.34% 94.34%
100 12554 10652 84.85% 84.85%
500 62597 12447 19.88% 19.88%

E. Impact of Cookie Rejection

TESEC uses cookies to distinguish different users and
partition their behaviors. If an attacker deliberately rejects
the cookie, then the investigation ability of TESEC will be
negatively affected. In this case, TESEC is considered to be
effective if one of the following two conditions is met:

1) TESEC is able to detect whether the user has rejected
cookies. If an attacker rejects all cookies, it will behave like
a new user to the web application – since a new user sends
requests without any cookies on their first visit to the web
application. Then, if there is no corresponding outgoing edge
from the root node in AC automaton, it can be inferred that
the user deliberately rejects the cookie, and this condition is
met.

2) Though TESEC cannot detect the situation that cookies
are rejected, it still can successfully find the corresponding UI
element. It can be noticed that if a user only sends one backend
request when interacting with a UI element, then TESEC will
not be able to determine whether the sender has deliberately
rejected the cookie, but TESEC can still find the UI element
and this condition is met.

If both conditions are not met, TESEC’s attack investigation
between UI elements and backend requests will be unreliable,
but it will not affect the attack investigation between backend
requests and audit log entries.

App 3 is used to do the evaluation. We interacted with all
UI elements of App 3 with cookies turned off. The results
shows that, for 52.38% UI elements, TESEC can tell that the
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cookies are turned off (i.e., condition 1 is meet); for 40.48%
UI elements, TESEC can trace to that very UI element (i.e.,
condition 2 is meet); only for 7.14% of UI elements, TESEC
neither detected the cookie rejection nor found the correct UI
elements.

These backend requests that do not satisfy both conditions
are starting requests for some UI elements. For example, when
entering a form filling page, request A is sent. When the
user fills the form and clicks the “Submit” button, the form
will be uploaded and request B will be sent. After that, the
page will be refreshed and request A will be sent again. In
this case, when the backend receives BA, since the cookie is
rejected, the A request will be traced back to the UI element
of “entering the page” instead of “clicking the button”.

Without recording cookies, if an attacker interacts with
different UI elements multiple times, TESEC can detect it with
a high probability. At that time, the security analysts can locate
the attacker from alerts through IP or other methods.

F. Performance Overhead

1) Runtime Overhead: The deployment of TESEC incurs
additional runtime overhead:
• TESEC maintains the transfer on AC automation online

when it receives a backend request.
• TESEC generates a 404 syscall every time the coroutine is

switched.
We evaluate the influence of TESEC on the system response

time. For App 1, we use 10, 100 and 500 threads to concur-
rently access it, and visit all 5 APIs randomly. For App 2, we
use 50 and 100 threads.The results are shown in Table IX. It
can be found that for App 1, as the number of concurrent
threads continues to increase, the overhead of the average
response time does not increase significantly. It remains at
about 1%. There is no obvious change in the maximum and
minimum response time. For App 2, the average response time
overhead remains within 5%, and the maximum and minimum
response time do not change significantly.

2) Space Overhead: Space overhead incurred by the de-
ployment of TESEC consists of two parts:
• TESEC records the current automaton node ID in each user’s

session. Node ID can be recorded in cookie or in a database.
Since the node ID is just a number, we consider the space
overhead caused by this part to be negligible.

• TESEC inserts delimiter-logs in the audit log, which will
cause space overhead.

Therefore, we counted the change of audit log sizes before
and after TESEC is deployed.

The evaluation method is the same as that of Runtime
overhead. While recording the response time, we also recorded
the change of audit log size, as shown in Table X. It can be
found that, regardless of the number of concurrent threads,
the number of lines in the audit log increased less than 5% in
both applications. Considering the different configurations of
auditd in different production environments, we recorded the
number of 404 syscalls. A 404 syscalls will generate 2 lines

of auditd log entries, so averagely a request will generate less
than 4 lines of auditd log entries.

Since each coroutine switch will trigger a 404 syscall, for a
request, the number of 404 syscall can represent the switching
times of the coroutine processing this request. We found that
even in the case of high concurrency of requests, the average
number of coroutine switching times is low.

VI. LIMITATION AND DISCUSSION

A. Auditd Log Entries Loss at High Throughput

In Evaluation, we mentioned that the auditd log may lose
log entries in the case of high throughput, and will not record
the 404 syscall triggered by TESEC, thus causing the matching
failure. Our idea is to consider saving the log entries of the
404 syscalls as a separate file, and confirm its location in the
auditd log through timestamp matching, so as to avoid too
high auditd log throughput. However, during the experiment,
we found that the timestamp recorded by auditd has a certain
deviation from the timing function that comes with Python,
and it is difficult to match. And the timestamp of auditd is
not accurate enough, there will be multiple syscalls with the
same timestamp. Therefore, we currently do not have a good
solution to this problem.

B. How to Handle Concurrent Backend Requests from the
Same Session?

We believe that under normal circumstances, the backend
requests generated when interacting with UI elements arrive
at the backend server one by one in a fixed order, which is
also the premise that we can model backend requests with
strings. However, in real world, sometimes the browser calls
the backend request asynchronously. At this time, the backend
requests arriving at the backend will be in an indeterminate
order. If we want to learn the correlations between UI elements
of this type and the request sequences they might trigger
through TESEC, we may have to enumerate all possible
request orders. At this time, it is inevitable to modify the test
code. We believe that we can use the idea of automating the
analysis of JS code for testing, and automatically analyze the
backend requests whose relative order may change, reducing
the workload of manual testing of the code.

C. How to Handle Backend Requests that are Sent Periodi-
cally?

There is also a special phenomenon in the real world, that is,
after interacting with a UI element, the page may be controlled
by JS code and send requests to the backend periodically.
Such a request may be inserted between consecutive backend
requests generated by other UI elements, which interferes
with the investigation on the latter. In order to solve this
special case, we can add some information to the backend
API documentation to let TESEC ignore this kind of backend
request.
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TABLE IX
COMPARISON OF RUNTIME

App Threads Number Request Number Average Response Time (s) Maximum Response Time (s) Minimum Response Time (s)
No TESEC With TESEC No TESEC With TESEC Overhead No TESEC With TESEC No TESEC With TESEC

App 1
10 3469 3537 2.5077 2.5337 1.0% 5.2050 6.0101 0.0030 0.0031

100 34826 35081 2.5366 2.5386 0.1% 5.5001 5.5728 0.0028 0.0029
50 175425 175079 2.6139 2.6403 1.0% 7.9604 6.7906 0.0028 0.0027

App 2 100 20000 20000 0.0092 0.0096 4.3% 0.1500 0.1597 0.0045 0.0048
500 20000 20000 0.0120 0.0121 0.8% 0.3641 0.2624 0.0046 0.0048

TABLE X
COMPARISON OF SPACE

App Threads Number Request Number Number of auditd Log Lines Number of 404 Syscalls Average Number of 404 Syscalls
Without TESEC With TESEC Without TESEC With TESEC Overhead Without TESEC With TESEC

App 1
10 3469 3537 903060 922451 2.1% 5236 1.61

100 34826 35081 4973170 5075887 2.1% 55028 1.57
50 175425 175079 22494240 23080385 2.7% 55028 1.66

App 2 100 20000 20000 1172180 1221896 4.2% 24612 1.23
500 20000 20000 1085990 1135516 4.6% 25013 1.25

VII. RELATED WORK

A. Attack Investigation Using Provenance Graphs

The provenance graph, proposed by BackTracking [23],
[24], expresses the causal relationship between entities in com-
puters. Entities are divided into subjects (processes, threads,
etc.) and objects (sockets, files, etc.). Provenance graphs are
usually generated using logs, and most articles [14], [30] use
audit logs to generate system-level provenance graphs. SPADE
[9]–[11] provides a set of general audit-level provenance
graph generation tools from multiple operating systems, and
graphs can be automatically built by collecting system logs.
Camflow [37], [38] provides a kernel-level provenance graph
generating tool for Linux. It is based on the LSM module
of the Linux kernel, which observes system objects and their
communication in the kernel. Camflow [12], [13] realizes a
more fine-grained provenance graph generation.

Forensics analysis algorithm [50] [51] [23] [24] [22] [27]
[31] [19] [26] [49] can be executed on the provenance graph.
The standard forensics analysis algorithm consists of two
steps: firstly it performs backward analysis from symptom
events, and then it performs forward analysis starting from the
entities found in the backward analysis and finds out the pos-
sible impact of the attack. The accuracy of forensics analysis
algorithm is often affected by dependency explosion problem,
which refers to the fact that an entity (often corresponding
to a long-running process) may be connected with too many
input edges and output edges, such that all output edges of the
entity are considered to be dependent on all its input edges.

In order to solve the dependency explosion problem,
BEEP imported binary instrumentation method to divide long-
running processes into several units. MPI strengthened the
effect of execution partition by allowing users to annotate
the source code to mark the high-level unit. Although MPI
also inserts messages into audit logs, it is quite different
from TESEC for the following reasons: (1) MPI takes the
source code as input. It first makes some annotations to the
source code such that it can weave the instrumentation into
the executable. It requires and changes the source code and

is then somehow heavyweight, which has two consequences:
1) if the source code is not available, MPI cannot apply; 2)
the whole process of MPI should be redone if the software
is updated. TESEC leverages the internal features of web
frameworks and is implemented in a plug-in fashion. As a
result, it is orthogonal to the software updates and lightweight.
(2) It is common that web frameworks are implemented in
interpreted languages, so there is no compilation process and
no intermediate product like LLVM. As a result, the MPI
solution cannot apply. (3) For most web applications, they
import various third-party libraries. For example, the coroutine
scheduling method of Python can be imported and modified
at will. It is difficult for MPI to automatically and statically
calculate the location that needs to be instrumented. So that
MPI needs to recalculate for each specific application, while
TESEC only needs to instrument a web framework for one
time. (4) In order to find the request, additional information
should be recorded, which leads to a specific amendment to
MPI’s annotation and compilation process. This amendment
connot be done in a general fashion, in our opinion.

B. Accurate Attack Investigation on Web Applications

Some work uses finite state machines [2] to model web
services’ front-end to back-end network requests. Haydar et al.
proposed [16] for automatic modeling and formal verification
of web applications using communicating finite automaton.
This method can complete state machine modeling for com-
plex web applications of multi-window/frame. Some articles
[33] also proposed methods for detecting and preventing
SQL injection attacks using Aho-Corasick automaton. These
methods [21] analyze the patterns in SQL statements and use
the multi-pattern matching function of AC automata to detect
possible attack patterns. NPF [5] proposes a forensics analysis
method for web applications using binary instrumentation.

Few articles can solve the problem of UI-level attack
investigation. UIScope proposes a solution on PC side. It gives
an algorithm for generating the UI-level provenance graph
using the logs from Windows UI Automation. It has also
designed timestamp matching strategies to merge the system-
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level provenance graph and the UI-level provenance graph.
UIScope’s UI-level solution can hardly migrate from PC-
side to server-side and be used on web applications, because
logs recording the interactions between users and browsers
can not be collected on server-side, and UIScope’s timestamp
matching strategy can not handle high concurrent cases. There
exists some client-side forensics researches and products, such
as Mnemosyne [4], JsGraph [28] and Zipkin [52], which can
also be used for web attacks provenance.

VIII. CONCLUSION

We propose TESEC, a UI-level accurate attack investigation
algorithm for web applications. TESEC uses log partition tech-
nology to achieve accurate provenance from system calls to
network requests, and uses AC automaton to achieve accurate
matching from network requests to UI elements. When an
alarm occurs, TESEC can start from the symptom event and
trace back to the UI event that may cause that event, thereby
helping security analysts quickly fix the vulnerabilities. We
use 12 applications to evaluate the effect of TESEC. The
experimental results show that TESEC achieved an average
accuracy of more than 99.6% in the case of high concurrency
of requests with only 4.3% runtime overhead and 4.6% space
overhead. We implements TESEC for several web frameworks
in Python, Java and Node.js. We have already made our
implementations open source.
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APPENDIX A
DISCUSSION ON MAKING AUDITD TRACK TID

Auditd in Linux does not record TIDs by default. To
solve this problem, on Linux OS, we can slightly modify the
behavior of auditd and make it log TIDs by inserting modules
into the kernel. This method is widely used by many works,
such as OmegaLog [15].

In detail, we can make auditd record TIDs as follows:
observing the audit log exit function in linux/kernel/auditsc.c,
we can find that when a syscall event occurs, it will call
the function audit log format in linux/kernel/audit.c and log
the syscall number. Therefore, we can hook the function au-
dit log format to call task pid vnr(current) to get the Linux
Kernel PID (TID) under this condition and log it. The core
code is shown as follows.
/* Function pointer declarations for
the real audit_log_format */
static asmlinkage void (*orig_audit_log_format)
(struct audit_buffer *ab, const char *fmt, ...);

static asmlinkage void hook_audit_log_format
(struct audit_buffer *ab, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
if (strcmp(fmt, "arch=%x syscall=%d") == 0) {
orig_audit_log_format(

ab, "tid=%d arch=%x syscall=%d",
task_pid_vnr(current), args

);
} else {

orig_audit_log_format(ab, fmt, args);
}
va_end(args);

}

static struct ftrace_hook hooks[] = {
HOOK("audit_log_format", hook_audit_log_format,

&orig_audit_log_format)
};

APPENDIX B
BASIC INFORMATION FOR APP 1-7

1) App 1. App 1 is not a real application, but a FastAPI
application specially designed by us to test performance
and investigation effectiveness. Its UI elements and back-
end APIs are designed to be one-to-one. It only contains 5
backend APIs, which correspond to 5 different operations
that trigger syscalls, including reading, modifying and
deleting operations on files. When each backend request
is processed, it will asynchronously sleep for a random
span from 0 to 5 seconds to simulate the different
processing time of different backend requests. We used
Gunicorn to deploy App 1 with 4 processes and timeout
is set to 2 minutes.

2) App 2. App 2 is a real FastAPI project, including 13
backend APIs. We use Gunicorn to deploy App 2, adopt
the mode of 4 processes, and set the timeout to 2 minutes.

3) App 3. App 3 is a real Express.js [7] project, includ-
ing 42 backend APIs. The project is deployed in a single
process (inherently with coroutine).

4) App 4. App 4 uses the example application sqla
(SQLAlchemy [42] model backend integration examples)
provided by the open-source project flask-admin8, includ-
ing 24 backend APIs. We use Gunicorn to deploy App 4
and set the time limit to 2 minutes.

5) App 5. App 5 uses the open-source project awesome-
python3-webapp9, which is a blog application based on
Aiohttp, including 11 backend APIs. The project is
deployed in a single process (inherently with coroutine).

6) App 6. App 6 is a real Springboot web application
deployed in Tomcat server (inherently multi-threaded)
with 64 backend APIs. It is deployed in Windows and
we used Procmon to trace its behavior.

7) App 7. App 7 is a real Express.js web application
with 18 backend APIs. The project is deployed in a single
process (inherently with coroutine).

8https://github.com/flask-admin/flask-admin
9https://github.com/michaellio/awesome-python3-webapp
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APPENDIX C
BASIC INFORMATION FOR APP 8-12

1) App 8. App 8 contains CVE-2021-4422810, the well-
known Log4Shell, a vulnerability in Log4j that ex-
ploited the weakness Deserialization of Untrusted Data.
It is deployed in Tomcat and we exploited the vulner-
ability to execute ‘calc’. TESEC successfully found the
attack entrance and the provenance graph is shown in
Figure 10 (a).

2) App 9. App 9 contains CVE-2021-2131511, a
Command Injection Vulnerability in npm package
systeminformation. It is an Express.js
application and we exploited the vulnerability to upload
ssh public key. TESEC successfully found the attack
entrance and the provenance graph is shown in Figure
10 (b).

3) App 10. App 10 is the python version of XXE-LAB12. It
is a Flask application that contains a XML eXternal
Entity Vulnerability. We exploited it to read a secret
file. TESEC successfully found the attack entrance and
the provenance graph is shown in Figure 10 (c).

4) App 11. App 11 contains CVE-2016-443713, a vulner-
ability in Apache Shiro that exploited the weakness
Improper Access Control. It is deployed in Tomcat and
we exploited the vulnerability to execute ‘calc’. TESEC
successfully found the attack entrance and the provenance
graph is shown in Figure 10 (d).

5) App 12. App 12 contains CVE-2017-829114, a vulner-
ability in Artifex Ghostscript that exploited the
weakness Incorrect Type Conversion or Cast. It is a
Flask application and we exploited the vulnerability to
read a secret file. TESEC successfully found the attack
entrance and the provenance graph is shown in Figure 10
(d).

10https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
11https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-21315
12https://github.com/c0ny1/xxe-lab
13https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-4437
14https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2017-8291

APPENDIX D
PROVENANCE MODEL

As shown in Table XI and XII, the provenance graph
of TESEC consists of 4 types of nodes (representing files,
processes/threads, network requests, and UI elements) and
edges among them. File and process/thread nodes are the same
as those in traditional provenance graphs. The edges between
process/thread and file have the same meanings as those in
previous works [23].

Network request node, which describes the full content of a
network request, is new with our provenance model. The edge
between a process/thread and a network request node means
that the network request is handled by the corresponding
process or thread.

UI element nodes are newly introduced. Each UI element
corresponds to a user behavior on UI, and corresponds to a
function provided by the testing tool as well as the information
of its caller and parameters. The edge from a network request
node to a UI element node represents the action that the UI
element sends the corresponding network request.

TABLE XI
NODE TYPES IN PROVENANCE MODEL

Node Type Description
File same as previous works

Process/Thread same as previous works
Network Request full content of a network request

UI Element interactions with elements on web pages

TABLE XII
EDGE TYPES IN PROVENANCE MODEL

Edge Type Description
between File and Process/Thread same as previous works

Process/Thread to Network request network request is handled by process/thread
Network request to UI Element UI element sends the network request
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Fig. 10. Provenance Graph for App 8-12.
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