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Abstract—Anomaly detection is crucial for web application
security, yet existing methods like rule-based validation
and learning-based models face significant limitations.
Rule-based systems struggle with novel attacks, while
learning-based approaches require frequent, costly re-
training to adapt to dynamic application updates, of-
ten leading to high false positives. While recent self-
comparison methods address retraining by comparing
replicas in microservice scenarios, they are ill-suited for
monolithic applications due to functional heterogeneity,
offer coarse-grained detection, lack adaptive comparison
baselines, and are vulnerable to coordinated poisoning.
This paper presents APIECHO, a novel web server intru-
sion detection method for monolithic applications that op-
erates without large-scale pre-training. APIECHO’s core
insight is that legitimate requests to the same API endpoint
exhibit highly similar underlying behavioral patterns. Our
system shifts the comparison granularity from replicas
to individual requests within the same API, employing
dynamic API classification, fine-grained behavioral fea-
ture extraction (including sequential and set-based fea-
tures), per-API adaptive similarity thresholds, and an anti-
poisoning sliding window update mechanism. Extensive
evaluations on 16 real-world scenarios demonstrate that
APIECHO significantly outperforms state-of-the-art meth-
ods. It effectively adapts to application updates without
retraining, resists coordinated poisoning attacks, surpasses
existing methods in average detection score, and achieves
attack recall rates exceeding 90% while maintaining be-
nign event detection accuracy above 99%, all with low
overhead, processing more than 12000 log events per
second with less than 7GB memory consumption.

1. Introduction

Anomaly detection in web applications is crucial for
identifying suspicious activities that deviate from nor-
mal behavior, thereby bolstering system security against
unknown attacks [1]–[3]. Traditional methods predom-
inantly fall into two categories. Rule-based validation
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checks compliance with predefined security policies [4],
[5], offering simplicity but failing to detect novel attacks
absent from these rules [6]. Alternatively, learning-
based methods model normal behavior from clean data
[7]–[13]. While capable of detecting some unknown
attacks, these methods struggle with the dynamic nature
of modern web applications. Frequent updates alter
“normal behavior”, necessitating model retraining to
avoid excessive false positives, a process that is both
resource-intensive and reliant on often elusive clean
post-update datasets.

To mitigate the dependency on training baselines,
recent research [6] has introduced approaches for mi-
croservice architectures leveraging the high behav-
ioral similarity among service replicas. These self-
comparison methods detect anomalies by identifying
replicas whose behavior deviates significantly from oth-
ers within the same time window, thereby obviating
retraining as all replicas’ behaviors co-evolve with up-
dates. However, such replica-centric comparison tech-
niques face several challenges, particularly with mono-
lithic applications or sophisticated attacks:

• Applicability to Monolithic Architectures: The
core assumption of functional singularity and behav-
ioral homogeneity among replicas is often invalid
for monolithic applications. Replicas of monolithic
systems typically handle diverse functions, leading
to significant behavioral variations even under nor-
mal operation, which can trigger false positives for
replica-comparison systems.

• Coarse-grained Detection and Limited Features:
Analyzing aggregated replica behavior over time win-
dows restricts the ability to pinpoint malicious re-
quests and limits feature extraction to primarily sta-
tistical, set-based measures. This overlooks subtle,
sequence-based anomalies, hindering precise attack
tracking and identification.

• Static Comparison Baselines: Employing uniform
comparison thresholds across all behaviors fails to
account for the inherent variability in different system
functions (e.g., login vs. file upload operations), po-
tentially leading to both false positives and negatives.

• Susceptibility to Coordinated Poisoning Attacks:



If an attacker compromises most or all replicas with
similar malicious behavior simultaneously, the behav-
ioral differences between replicas diminish, poten-
tially evading detection by these comparison schemes.

Our Solution. To address these limitations, we pro-
pose APIECHO, a novel web server intrusion de-
tection method designed for monolithic applications.
APIECHO retains the advantages of comparison-based
detection (i.e., no large-scale pre-training) while en-
hancing detection accuracy and robustness. It is founded
on the key observation that even within complex mono-
lithic applications, multiple legitimate requests target-
ing the same API should exhibit highly similar underly-
ing behavioral patterns. Consequently, APIECHO shifts
the self-comparison granularity from inter-replica to
intra-API request comparisons. APIECHO incorporates
the following key designs:
• API-Centric Comparison for Monolithic Appli-

cability: APIECHO classifies incoming requests to
their specific API endpoints using a dynamic API
classification engine. This engine, inspired by [14]
but featuring a novel trie-based matching logic, dy-
namically identifies URL parameters and adapts to
API evolution. By comparing behaviors of requests
for the same API, it naturally handles the functional
diversity of monolithic applications.

• Fine-Grained and Sequence-Aware Detection:
APIECHO achieves fine-grained analysis by parti-
tioning system-level audit logs into behavioral units
corresponding to individual web requests [15]. This
enables pinpointing malicious requests and extracting
rich sequential features (e.g., syscall order) alongside
set-based features, thereby detecting subtle attacks
missed by aggregate analysis.

• Adaptive Per-API Comparison Baselines: As
different APIs have distinct behavioral norms,
APIECHO independently calculates behavioral sim-
ilarity distributions for each API’s request stream
within sliding windows and applies adaptive normal-
ization and thresholding, akin to batch normalization.

• Resilience to Coordinated Poisoning: APIECHO
performs detection at the individual request level.
Anomalous requests, identified by deviation from cur-
rent normal behavior within an API’s sliding window,
are prevented from being incorporated into subse-
quent windows, thus preserving integrity of normal
behavior baseline against poisoning attempts.

The workflow of APIECHO involves: partitioning
system-level audit logs into per-request behavior units;
classifying units to specific APIs using dynamic API
classification engine; extracting set and sequence fea-
tures for requests within each API’s sliding window;
computing inter-request similarities; and identifying
anomalies using an adaptive algorithm. Sliding win-
dows for each API are dynamically managed based on
detection outcomes and external update notifications to
maintain sensitivity and adapt to application evolution.

Experiments and Evaluations. We conducted a series
of experiments to comprehensively evaluate the effec-
tiveness of APIECHO. We constructed 16 experimental
scenarios using real-world Web applications and vul-
nerabilities, and compared APIECHO with the state-
of-the-art non-pre-training method ReplicaWatcher [6],
as well as pre-training-based methods KAIROS [7]
and ProvDetector [8]. Results demonstrate APIECHO’s
significantly superior detection performance, surpassing
existing methods in average detection score, achieving
attack recall rates exceeding 90% while maintaining
benign event detection accuracy above 99%, its effective
resistance to coordinated poisoning attacks, and its abil-
ity to adapt to application updates without retraining,
all with low computational overhead, processing more
than 12000 log events per second with less than 7GB
memory consumption. Ablation studies further validate
the contribution of each design component.
Our Contributions:
• We propose a novel web server intrusion detection

method without needs of large-scale pre-training,
based on comparing behavior of different requests
of the same API, overcoming limitations of existing
self-comparison methods for monolithic applications.

• We design and implement the APIECHO system,
which integrates dynamic API classification, multi-
dimensional feature extraction based on sequences
and sets, per-API adaptive thresholds, and anti-
poisoning sliding window update mechanisms.

• We conducted extensive evaluations demonstrating
that APIECHO adapts to application updates with-
out retraining and effectively resists coordinated poi-
soning attacks. In 16 scenarios using real-world
web applications, APIECHO’s detection performance
surpasses state-of-the-art pre-training-based methods,
achieving attack recall exceeding 90% while main-
taining benign event detection accuracy above 99%.

In the spirit of open science, we make our tool
available at https://github.com/finall1008/apiecho.

2. Motivation

To illustrate the challenges addressed by APIECHO,
consider a scenario with a frequently updated, mono-
lithic FastAPI web application, based on our experi-
mental data (python-demo, see Section 5).
Pre-training Anomaly Detection Solutions. Initially,
a pre-training solution like ProvDetector [8] was de-
ployed. It performed well on the validation set of at-
tacks, achieving nearly 100% recall and an overall accu-
racy of 92.2%. However, a routine application upgrade
rendered its baseline model obsolete, causing accuracy
to plummet to 54.1% due to a surge in false positives.
Restoring performance required retraining, a process
demanding expert intervention, substantial clean traf-
fic data, and significant computational resources (e.g.,
GPUs, hours to over a day). For an application with
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frequent updates, this operational overhead and slow
response were impractical.
Replica-based Self-comparison Methods. Subse-
quently, a self-comparison method ReplicaWatcher [6]
that obviates pre-training was explored, discovering
anomalies by comparing behavioral similarity across
service replicas within the same time window. However,
for a monolithic application with diverse functionalities,
different replicas often processed varied request types
and executed distinct functional paths simultaneously.
This inherent behavioral heterogeneity led to numerous
false positives. Adjusting the threshold to mitigate this
improved accuracy to 98.5% but drastically reduced
attack detection recall to only 50%. Even when a gen-
uine attack was identified, the coarse-grained detection
could only flag the anomalous time window, failing to
pinpoint the specific malicious request.

More critically, such methods are vulnerable to
coordinated poisoning attacks [6]. If attackers launch
similar malicious behaviors across most or all replicas,
the behavioral differences between them diminish, hin-
dering detection. This vulnerability was demonstrated
in a simulated coordinated poisoning attack (repeatedly
executing the attack API /solve, causing all replicas
to process attack requests), where even with further
threshold adjustments, attempts to maintain a 55.0%
recall resulted in accuracy dropping to 51.4%, rendering
the system ineffective.

This predicament underscores need for a novel web
server intrusion detection method that: 1) avoids large-
scale, time-consuming pre-training and frequent retrain-
ing; 2) effectively adapts to complex monolithic web
applications, maintaining low false positives and high
recall despite behavioral heterogeneity; 3) offers more
fine-grained detection to precisely identify malicious
activities; and 4) is robust against advanced attacks
like coordinated poisoning. APIECHO is designed to
address these core challenges.

3. Threat Model

APIECHO primarily targets remote attacks against
monolithic web applications launched via public net-
work interfaces. Attackers typically exploit software
vulnerabilities through malicious HTTP requests to
achieve objectives such as control-flow hijacking, sen-
sitive data theft (e.g., authentication bypass, directory
traversal), file system integrity compromise (e.g., file
inclusion vulnerabilities), or unauthorized code and
command execution (e.g., command injection).

Similar to many anomaly detection methods based
on audit logs [6]–[8], attacks not exhibiting dis-
cernible syscall level behavioral differences, such as
certain purely application-logic data tampering (if it
doesn’t alter underlying behavior), are currently out-
side APIECHO’s direct scope. Similarly, side-channel
attacks, hardware-level exploits (e.g., Spectre), re-
source exhaustion denial-of-service attacks (e.g., net-

work floods), remote passive system fingerprinting, net-
work spoofing, and scenarios requiring prior physical
access or internal network compromise are not the
primary focus of our current method.

We assume the server’s operating system provides
reliable audit logging for system-level behaviors (in-
cluding process/thread identifiers) and that APIECHO
can access and process these logs. Furthermore, we
presume the audit log generation mechanism and
APIECHO itself are part of the trusted computing
base (TCB), meaning their integrity and availability
are protected from attacker tampering—a common and
necessary assumption for many log-dependent security
analysis and intrusion detection systems [15]–[17].

4. System Design

4.1. System Design Overview

APIECHO’s workflow has three parts (Figure 1):
1) Request Partition and API Classification (Section

4.2). APIECHO decomposes audit log entries into
Web API-classified units.
• Unit Partition. APIECHO first uses the unit par-

titioning method from [15], analyzing the web
application’s execution model to embed partition
information into audit logs. It then uses this infor-
mation to decompose audit logs into units, each
corresponding to a web request.

• Dynamic API Classification. To identify API of
each web request, APIECHO maintains a trie-
based API catalog for real-time classification. For
each request unit, APIECHO extracts its web re-
quest URL and queries the API catalog for the
API. Concurrently, this URL updates the API
catalog, enabling adaptation to application updates
and automatic correction of outdated APIs.

2) Intra-API Anomaly Detection (Section 4.3). For
each API, APIECHO maintains a detection window
of several request units. It compares request unit
similarity within this window to output the detection
result for the latest unit.
• Feature Extraction. For each request unit in the

window, APIECHO extracts sequential and set
features from its audit log entries.

• Similarity-based Anomaly Detection.
APIECHO calculates similarity scores between
request unit features, effectively converting them
as vectors. An anomaly detection algorithm then
identifies outliers, flagging corresponding request
units as anomalous.

3) Window Management and Baseline Adaptation
(Section 4.4). APIECHO determines the next de-
tection window’s content based on the latest unit’s
detection result. If malicious, the request unit is
removed from the window to ensure subsequent
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Figure 1. APIECHO Overview

detection accuracy and defend against coordinated
poisoning. Otherwise, the unit is retained to adapt
to normal behavior drifts.

4.2. Request Partition and API Classification

APIECHO’s first stage, Request Partition and API
Classification, transforms audit logs into behavioral
units and classifies them to an API endpoint re-
spectively. This is crucial for subsequent fine-grained
anomaly detection by enabling analysis of compara-
ble behavioral sets. It involves: Unit Partition isolates
request-specific segments from commingled audit logs
and Dynamic API Classification maps units to APIs.

4.2.1. Unit Partition. The Unit Partition module pre-
cisely segments commingled system-level audit logs,
associating segments with specific web requests. This is
foundational for fine-grained behavioral modeling and
comparison of individual requests.

We adopt TeSec’s audit log partitioning [15]. This
addresses: 1) correlating low-level system behaviors
(syscalls) with high-level requests (user API calls), and
2) handling log entry interleaving from web server
concurrency (multi-processing/threading, coroutines) to
ensure each unit contains only single-request behaviors.

TeSec’s core idea is inserting delimiter logs into au-
dit logs via lightweight web application instrumentation
at critical request processing points. These delimiters
contain an unique ID for specific backend requests.
Specifically, it generates delimiter logs by writing code
to output category, unit ID, and other information to
/dev/null, which does not affect the application’s
original behavior but allows these details to be captured
in audit logs at the required locations.

This technique’s approach varies by web application
concurrency model:
1) Multi-processing / Multi-threading based concur-

rency model. The application typically uses a pro-
cess/thread pool, in which each worker handles
requests sequentially, proceeding to the next after
finishing one request. Thus, syscalls from the same
worker are logged sequentially; PID/TID in logs
allows grouping interleaved entries. TeSec instru-
ments the application to insert a delimiter log with a
request ID before a worker processes a new request.
Audit entries associate with a request by tracing
back to the nearest delimiter within their PID/TID
log sequence. PID/TID distinction prevents inter-
leaving from affecting intra-worker log sequentiality.

2) Coroutine-based concurrency model. For coroutine
models, OS audit logs don’t capture user-space
coroutine switches, so TID alone is insufficient.
TeSec addresses this with finer-grained instrumenta-
tion, inserting delimiter logs not only at request start
but also at each coroutine switch. This allows accu-
rate segmentation of commingled syscalls within a
single TID’s log stream.
Adopting TeSec’s unit partitioning allows

APIECHO to extract accurate behavioral units
(syscall sequence) per request from raw audit logs,
foundational for subsequent steps. TeSec’s advantages
include lightweight, often plugin-based modifications
(no core code changes) and linear time partitioning.

4.2.2. Dynamic API Classification. After Unit Par-
tition yields behavioral units for individual web re-
quests, the next step is Dynamic API Classification. Its
purpose is to accurately map each request unit to its



specific application API. For this, especially with evolv-
ing APIs in modern web applications, APIECHO uses
a dynamic, trie-based API catalog management and
classification mechanism. Inspired by Akto [14] for API
auto-discovery, it automatically learns and identifies
API structures from URLs (including parameterized
segments) and adapts to API changes.

Algorithm 1: Dynamic API Classification
Input :

req unit: A partitioned request unit containing
HTTP method and URL
Output :

api id: Classified API identifier of req unit
Variables :

catalog: Trie, stores API templates
stat keys: Set, unmatched concrete URLs awaiting

generalization
param mons: Map, parameter value monitors for

API evolution tracking
Functions:

EXTRACTKEY(req unit): Extract normalized
HTTP method and URL path

FINDGENKEY(tgt key, key set): Find a static key
that can generalize with target

GENTPL(k1, k2): Create parameterized template
from two similar keys

UPDATEPMON(id, key): Record parameter values
for evolution tracking

CHECKSPLIT(id): Split API template if parameter
diversity becomes low

FINDCOVKEYS(tpl, key set): Find all static keys
covered by template

1 Function CLASSIFYREQ(req unit):
2 s key← EXTRACTKEY(req unit);
3 api id← catalog.MATCH(s key);

4 if api id ̸= NULL then
5 UPDATEPMON(api id, s key);
6 CHECKSPLIT(api id);
7 return api id;
8 end
9 stat keys.ADD(s key);

10 gen key← FINDGENKEY(s key, stat keys);
11 if gen key ̸= NULL then
12 new tpl← GENTPL(s key, gen key);
13 new id← catalog.ADDTPL(new tpl);
14 cov keys←

FINDCOVKEYS(new tpl, stat keys);
15 forall k ∈ cov keys do
16 stat keys.REMOVE(k);
17 UPDATEPMON(new id, k);
18 end
19 return new id;
20 end
21 return catalog.NEWTMPAPI(s key);

Algorithm 1 outlines this: new requests match
against the API catalog (a trie), and unmatched URLs
are compared with others to discover common patterns
and generalize new API templates, updating catalog ac-
cordingly. This mechanism also adapts to API structural

evolution (e.g., parameterized segments becoming static
paths). Figure 2 exemplifies this.
API Catalog Structure and Request Matching.
APIECHO uses a trie [18] for its API catalog, efficiently
storing and retrieving path-based API definitions. As in
Figure 2(a), each node represents an HTTP method or
URL path segment. When a new request unit arrives,
its HTTP method and URL path with hostname/query
parts removed (search key) is matched against this trie.
• Successful match. The request is classified if its

search key matches an API template, respecting pa-
rameter type validation (e.g., <Int> in Fig. 2(d)).

• Failed match. Unmatched search keys (e.g., POST
/api/other/2 in Fig. 2(b) failing against template
POST /api/other/1) are temporarily stored as
static keys, indicating new, ungeneralized URLs.

Rule-based Parameter Discovery and API Template
Generalization. RESTful APIs use URL path parame-
ters (e.g., userId in /users/userId/profile),
so treating each unique URL as a separate API is infea-
sible, leading to API explosion and inaccurate structure.
Thus, APIECHO discovers parameters and generalizes
static keys into API templates. New static keys (e.g.
POST /api/other/2 in Fig. 2(c)) are compared
with similar static keys:
• Predefined parameter rules. Rules are used to identify

and extract types like numbers, UUIDs, hex strings
and common file extensions (Table 11).

• Parameter matching logic. If two static keys share
method, segment count, and differing segments con-
form to a predefined parameter type (e.g., 1, 2 as
integers in Fig. 2(c)), they form a template with a
parameterized node (e.g., <Int> in Fig. 2(d)).

• Arbitrary string parameters. For multi-segment APIs,
at most one segment can be an “arbitrary string”
parameter for patternless values (e.g., usernames) if
other segments are consistent.

Successfully generalized API templates (e.g., POST
/api/other/<Int> in Fig. 2(d)) are added to the
trie; all covered static keys are removed. Parameterized
nodes (e.g., <Int>) carry type information for subse-
quent request matching validation.
Splitting Mechanism for Adapting to API
Evolution. Web applications and their API
designs evolve. For example, a parameterized path
(/items/category_id) might become fixed paths
(/items/electronics, /items/books), each
with different logic, unsuited for a single parameterized
template. APIECHO uses an API splitting mechanism
to address this.
• Parameter value monitoring. APIECHO tracks ob-

served values for parameterized segments in a recent
window. If distinct values appeared consistently stay
below a threshold (e.g., few fixed values recently),
the segment is inferred to have solidified.

• Performing the split: The parameterized template is
replaced. New, specific API paths (static or with
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Figure 2. Example of dynamic API classification, demonstrating an new URL matched with another URL, and generalized into an API template.

deeper parameter hierarchy) based on these observed
static values are added to the trie. For example, if
/items/itemId recently only showed itemId as
special-A and special-B, it might be split into
/items/special-A and /items/special-B.

Manually configurable static key parameters. In
some web applications, there are circumstances where
parameters can significantly change behavior of an API
(e.g. /items/abc?action=get queries item abc,
while /items/abc?action=update changes it).
As an workaround, APIECHO also supports a manual
configuration mechanism, allowing operators to specify
certain query parameter or URL segments that should
be treated as static parts of the API path, thereby
preventing incorrect parameterization.

This dynamic API classification, with template gen-
eralization and splitting, enables APIECHO to accu-
rately classify request units, keeping robustness amid
evolving API structures in monolithic applications.

4.3. Intra-API Anomaly Detection

APIECHO’s core task, post-partitioning and API
classification, is detailed intra-API anomaly detection
on request behavior. APIECHO maintains a fixed-length
detection window per API. When full, it detects anoma-
lous units by comparing behavioral similarity among
requests in window.

Request units (sequence of audit logs) are vectorized
in two steps: first (Section 4.3.1), domain knowledge
and web server operational characteristics guide rule-
based extraction of core behavioral features (set-based,
sequence-based, etc.). Second (Section 4.3.2), to detect
behavioral deviations, these features are numerically
represented by calculating their similarities, leading to
an anomaly score per unit. These normalized scores
determine if a unit is anomalous.

4.3.1. Feature Extraction. Similar to ReplicaWatcher
[6], APIECHO extracts features covering different as-

pects of request processing behavior that change during
intrusions. Table 12 lists all features extracted.
Syscall Features. Syscalls are fundamental program-
kernel interactions [19]. During intrusions, request units
likely execute uncommon syscalls (e.g., fork and
exec for command execution). Therefore, the set of
syscalls executed by the request unit and their categories
(e.g., file or network operations) are used as features.
Notably, request processing of some complex applica-
tions might involve a wide variety of syscalls, such that
even under intrusion, changes of aforementioned two
features might not be significant. Therefore, sequence
of syscalls executed during request processing is also
used as a feature to enhance detection.
Resource Access Features. Files and sockets are pri-
mary web application interaction entities. Normal re-
quest processing accesses resources within fixed ranges,
while intrusions may access external files or communi-
cate with unusual addresses to steal data, gather infor-
mation, or achieve remote control. Therefore, we also
extract features such as accessed file directories, number
of distinct IP addresses interacted with and number of
distinct port numbers used.

4.3.2. Similarity-Based Anomaly Detection.
APIECHO extracts set, sequence, and numerical
features, in which set and sequence features require
conversion to numerical values/vectors for anomaly
detection algorithms. Since our primary concern is
how similar a unit is to others, rather than needing
an independent vector embedding of it, we, similar to
ReplicaWatcher, derive numerical representations by
calculating similarities.
Feature Similarity Calculation. For a detection win-
dow U = {u1, . . . , uNw

} with Nw request units, we
calculate similarity Sk(Fki, Fkj) ∈ [0, 1] between any
two units ui, uj for their k-th feature values Fki, Fkj .

• Set features. For features like syscall sets or file



directory sets, Jaccard similarity [20] is used:

SJ(A,B) =
|A ∩B|
|A ∪B|

where |A ∩ B| is intersection size, |A ∪ B| is union
size of the sets.

• Sequence features. For features like syscall se-
quences, order is crucial. Inspired by NLP n-gram
models [21], we extract the n-gram frequency dis-
tribution from the original sequence. An n-gram is
a subsequence of n consecutive elements. For exam-
ple, for read, open, write, read, open,
close, 2-grams include (read, open), (open,
write). We treat a sequence’s n-gram frequency
distribution as a high-dimensional vector, where di-
mensions are n-grams appearing in either sequence
and values are their frequencies. Then, cosine sim-
ilarity is applied between these vectors, serving as
original sequence similarity. For vectors x⃗, y⃗:

SC(x⃗, y⃗) =
x⃗ · y⃗

||x⃗||2 · ||y⃗||2
where x⃗ · y⃗ is dot product, ||x⃗||2 is L2 norm.

Initial Anomaly Vector Construction. For each unit ui

in window U , an M -dimensional initial anomaly vector
X⃗i = (x1i, . . . , xMi) is constructed, where xki is the
initial anomaly score on the k-th feature.
• Set and sequence features. Initial anomaly score xki

is the complement of average similarity of this unit’s
feature with the corresponding features of all others:

xki = 1− 1

Nw − 1

Nw∑
j=1,j ̸=i

Sk(Fki, Fkj)

where Sk(Fki, Fkj) is the similarity between units
ui and uj on the k-th feature. xki ∈ [0, 1]; closer
to 0 means more similar to window average (likely
normal), closer to 1 means likely anomalous.

• Numerical features (e.g., distinct IP count). Initial
anomaly score xki is deviation from window mean
µk = 1

Nw

∑Nw

j=1 Fkj :

xki = Fki − µk

Feature Dimension Normalization. After obtaining
initial anomaly scores xki, inspired by batch normal-
ization, APIECHO normalizes scores on each feature
dimension across all units in the window. This addresses
varying behavioral variability across APIs or features.
For example, the difference in the set of accessed
directories between two requests of a file upload API
might naturally be greater than that of a simple status
query API, where uniform scaling can cause over/under-
sensitivity. Normalizing adjusts their distributions to
similar ranges, allowing more comparable thresholds.

For the k-th feature dimension, initial anomaly
scores (xk1, . . . , xkNw

) are L2 normalized to
(x′

k1, . . . , x
′
kNw

):

x′
ki =

xki√∑Nw

j=1(xkj)2

If denominator is zero, x′
ki is zero. Each unit ui

then has a normalized anomaly feature vector X⃗ ′
i =

(x′
1i, . . . , x

′
Mi).

Final Anomaly Determination. APIECHO calculates
the Euclidean distance of X⃗ ′

i from origin as the final
comprehensive anomaly score Di for unit ui:

Di = ||X⃗ ′
i||2 =

√√√√ M∑
k=1

(x′
ki)

2

A larger Di indicates greater deviation from the col-
lective behavior in the window, hence higher likelihood
of being malicious. Di is compared with a predefined
global threshold Θ; if Di > Θ, unit ui is anomalous.

4.4. Window Management and Baseline Adap-
tation

APIECHO’s final key component is window man-
agement and baseline adaptation, ensuring detection
accuracy and sensitivity during web application evo-
lution. Its core involves dynamically maintaining each
API’s detection window, defending against coordinated
poisoning, and responding to external update notifi-
cations for lightweight baseline reconstruction. This
ensures APIECHO’s long-term effectiveness and low
operational cost in practical deployments.

4.4.1. Window Management. APIECHO maintains a
fixed-size (Nw) sliding detection window per API for
recent units. New units enter their API’s window.
• Standard sliding and baseline drift adaptation: New

unit unew replaces oldest uold, forming a new window
representing current “normal behavior”. Continuous
sliding enables automatic adaptation to gradual be-
havioral drifts from code optimizations, configuration
changes, load variations.

• Coordinated poisoning attack defense and baseline
protection: After anomaly detection on the latest unit
uNw (just added to the window):
1) If uNw

is normal: It remains in the window as
part of the baseline. If it brings new API pattern
information (e.g., new URL parameter form), the
API catalog can also update.

2) If uNw
is malicious: An alert is issued. Cru-

cially, uNw
is removed from the window, and

its structural information is not used to update
the API catalog. This prevents malicious requests
from contaminating the “normal” knowledge base,
defending against coordinated poisoning where
attackers try to “lower” the normal behavior stan-
dard or “train” the system to accept malicious
patterns via many similar malicious requests.



4.4.2. Incremental Similarity Calculation. Naively
recalculating the anomaly feature vector (all pair-
wise similarities, subsequent normalization) for all Nw

units per window slide takes O(N2
wM) (M features).

For real-time performance in high-throughput environ-
ments, APIECHO uses incremental calculation to opti-
mize update complexity to O(NwM).

When window W = {u1, u2, . . . , uNw
} slides to

W ′ = {u2, . . . , uNw
, unew}, initial anomaly scores xki

(defined in Section 4.3.2) will be updated for units
retained in the window u2, . . . , uNw

and the new unit
unew. For a retained unit ui ∈ {u2, . . . , uNw

}, its old
sum of similarities on feature k was:

Ŝki =
∑

uj∈W,uj ̸=ui

Sk(Fki, Fkj)

When the window updates to W ′, for the same unit
ui, its new sum Ŝ′

ki can be obtained by subtracting the
similarity with the removed unit u1 from the old sum
and adding the similarity with the new unit unew:

Ŝ′
ki = Ŝki − Sk(Fki, Fk,u1

) + Sk(Fki, Fk,unew
)

This is O(1) per remaining unit, thus O(Nw) for all
Nw − 1 units on feature k.

For new unit unew, calculating sum of similarities
Ŝ′
k,new on feature k costs O(Nw):

Ŝ′
k,new =

∑
uj∈{u2,...,uNw}

Sk(Fk,new, Fkj)

After new initial anomaly scores x′
ki (from new

Ŝ′ values) are updated/calculated, L2 normalization de-
nominator

√∑
uj∈W ′(x′

kj)
2 is recalculated. With all

x′
kj for uj ∈ W ′ known, this is O(Nw). Thus, for

M features, update complexity per slide is O(NwM),
enabling efficient continuous request processing.

4.4.3. Baseline Adaptation on Updates. Modern web
applications iterate rapidly; legitimate changes can sig-
nificantly shift underlying behavioral patterns. If an
API’s behavior changes post-update, APIECHO’s ex-
isting baseline might misclassify new normal behavior,
so a simple baseline reset mechanism is provided.
• When operators confirm persistent alerts are from

application updates rather than attacks, they notify
APIECHO through an external mechanisms.

• Upon notification, APIECHO clears detection win-
dows for specific APIs (or all for global updates).

• Cleared windows are then refilled with new requests,
building a new behavioral baseline.

This lightweight process avoids collecting extensive
new logs and resource-intensive retraining (common in
traditional methods), enabling rapid adaptation to post-
update normal states. Moreover, CI/CD rules can be set
to trigger detection windows reset when a new version
of application is deployed, thus make this process runs
automatically.

5. Evaluation

We designed experiments to answer the following
questions:
1) How effective is APIECHO in detecting intrusions

compared to existing approaches?
2) To what extent can APIECHO adapt to the diverse

behavioral patterns of different APIs?
3) How robust is APIECHO against poisoning attacks?
4) How effectively APIECHO adapting to app updates?
5) What is the impact of APIECHO’s key design com-

ponents and parameters on its overall performance?
6) What are runtime and space overhead of APIECHO?

5.1. Evaluation Setup

Hardware Setup. Most experiments used a Linux
server (Intel Xeon Platinum 8255C @2.50GHz, 128GB
RAM, Ubuntu 22.04). KAIROS GPU training utilized
a separate server (Intel Core i7-12700 @2.1GHz, RTX
3090 24GB GPU, 64GB RAM, Kali Linux).
Evaluation Datasets. We evaluated APIECHO across
16 scenarios (Table 1) to validate its effectiveness on di-
verse web applications. The scenarios are inherited from
AutoLabel [28], which provides open-source datasets
and reproducible dataset generation process. These sce-
narios covered 16 versions of 8 web applications, en-
compassing 10 real CVE vulnerabilities, and spanning
4 common languages (Python, NodeJS, Java, PHP). We
use Sysdig [5] to collect audit logs. In each scenario,
automated scripts simulated normal access behaviors
(20 min/scenario), and after 10 minutes of normal traf-
fic, attacks exploiting application vulnerabilities were
launched. This generated audit logs with mixed normal
and attack behaviors for experiments. Some of the 8
web applications required instrumented unit partition-
ing, for which we instrumented:
1) FastAPI [29] (Python asynchronous framework):

For python-demo, pgadmin, and other Python
asyncio-based ASGI frameworks. We added a
FastAPI middleware to inject a request ID into
Python’s asyncio-native context at the start of the
request flow, allowing it to propagate with corou-
tine derivations; then, we used monkey patching
to modify the asyncio.Handle type, outputting
the request ID from its context before and after it
is awakened for execution. This instrumentation is
done without altering source code.

2) Libuv [30]: For juice-shop, mongo-express,
and other NodeJS web applications. We allo-
cated unique IDs to various handles (including
uv_handle_t, uv__work, uv__io_t, etc.)
upon creation and output them to logs; delimiter
logs were output before and after their callbacks to
determine the executing handles and their derivation
relationships.

3) Java: For applications like solr and OFBiz us-
ing a thread pool model. We used a Java agent



for instrumentation, outputting unique IDs for all
Callable or Runnable objects upon creation,
and delimiter logs before and after their execution.
This instrumentation is done without altering source
code.

Labeling Method. For result evaluation, we use Auto-
Label [28] to generate ground-truth labels on log event
level. With full control of the attacker, it leverages
execution partition and flags injection to track malicious
behaviors, thus make sure the label is accurate. No-
tice that information that AutoLabel used for tracking
attacks is transparent to APIECHO and comparative
methods.

TABLE 1. SCENARIOS FOR GENERATING DATASETS FOR
EXPERIMENTS

# App
Name

Framework
or

Language
Weakness Version Source

1 python-
demo

FastAPI
(Python) Injection 2

versions
self-designed

2 pgadmin Flask
(Python) Injection 6.16 CVE-2022-4223

7.6 CVE-2023-5002

3 juice-
shop NodeJS

Security Mis-
configuration,

Injection
17.1.11 OWASP Juice Shop

4 mongo-
express NodeJS

Broken Access
Control 0.53.0 CVE-2019-10758

/ 1.0.2 No Attack

5 gitlist PHP Injection 0.6.0 CVE-2018-1000533
/ 1.0.0 No Attack

6 joomla PHP

Software and
Data Integrity

Failures
3.7.0 CVE-2015-8562

Broken Access
Control 4.2.7 CVE-2023-23752

7 Solr Java Injection 8.1.1 CVE-2019-0193
8.2.0 CVE-2019-17558

8 OFBiz Java

Software and
Data Integrity

Failures
17.12.01 CVE-2020-9496

SSRF 18.12.15 CVE-2024-45507
1 Updated version is made by altering source code.

5.2. Overall Detection Performance

This section evaluates the overall intrusion detec-
tion performance of APIECHO against three base-
lines: ReplicaWatcher, ProvDetector, and KAIROS. The
methods differ in native alert units: APIECHO uses
request units, KAIROS uses attacking subgraphs, and
ReplicaWatcher and ProvDetector uses time windows.
For fair comparison across methods, we standardized
evaluation at the event level, marking all audit events
in an alert unit as malicious. We recorded attack re-
call and detection accuracy, using their harmonic mean
(score) for performance comparison. Experiments were
repeated 20 times per scenario for average metrics.
Implementation of Baseline Methods:
• Benign-only audit logs were collected per scenario to

train ProvDetector and KAIROS.
• Mixed logs (labeled malicious/benign) were used by

all four methods for detection.

• For ReplicaWatcher, multiple replica log files were
collected concurrently and segmented into time win-
dows for input. To ensure a fair comparison that
favors ReplicaWatcher’s replica-based detection as-
sumption, we designed the input such that attack traf-
fic was confined to a single replica per time window,
while all other replicas maintained purely benign be-
havior. This setup maximizes ReplicaWatcher’s abil-
ity to detect deviations by providing a clear majority
of normal replicas for comparison.

Experimental Results. As shown in Table 2, APIECHO
detected more than 90% of attacks in all scenarios,
with benign event false positives less than 1%. Repli-
caWatcher, also using self-comparison, performed sig-
nificantly worse than APIECHO across all datasets
in both attack detection proportion and benign event
accuracy. As discussed in Chapter 2, ReplicaWatcher
assumes functional singularity and behavioral homo-
geneity among replicas. This assumption fails for mono-
lithic web applications at the whole-replica compari-
son level, explaining its suboptimal performance. Con-
versely, APIECHO uses API unit partitioning for finer-
grained self-comparison. Results show the homogeneity
assumption holds largely at this API level, yielding
superior performance. KAIROS’s overall detection was
slightly inferior to APIECHO, though with fewer false
positives in the joomla scenario. However, KAIROS
needs benign-only logs for GNN model training, which
took several hours to over a day on our hardware.
ProvDetector had shorter training times than KAIROS
but worse detection performance. In summary, results
show APIECHO achieves superior detection perfor-
mance in web server scenarios without pre-training,
outperforming the evaluated training-based methods.

5.3. Case Study

This case study analyzes behavioral differences be-
tween APIs of the same web application and whether
APIECHO correctly handles them.

Table 3 details behavioral features for two
python-demo APIs: the /solve API, which parses
and executes expressions, and the /status API,
which checks the application’s running status. Their
normal behaviors are in the first two columns. The
/solve API, vulnerable to arbitrary command exe-
cution, exhibits behavior under attack (third column).
The table shows the attacked /solve API’s behavior,
differing from its normal state, resembles the normal
/status API behavior. Figure 3(a) (PCA of aggre-
gated anomaly scores) shows attacked /solve data
points near normal /status points, indicating at-
tack masking by inter-API behavioral diversity when
not differentiating APIs. This shows that for mono-
lithic web applications, methods without API differ-
entiation like ReplicaWatcher suffer from interference
where one API’s normal behavior (e.g., /status)



TABLE 2. OVERALL DETECTION PERFORMANCE OF APIECHO AND BASELINE METHODS

# App APIECHO ReplicaWatcher KAIROS ProvDetector

Recall% Accu.% Score Recall% Accu.% Score Recall% Accu.% Score Recall% Accu.% Score

1 python-demo 100.0% 99.8% 0.9990 50.0% 98.5% 0.7952 70.0% 99.9% 0.9028 100.0% 92.2% 0.9594
2 pgadmin 100.0% 99.9% 0.9996 60.0% 47.3% 0.5799 100.0% 98.5% 0.9924 70.0% 57.1% 0.6747
3 juice-shop 95.0% 99.2% 0.9831 95.0% 21.5% 0.3523 45.0% 93.4% 0.7458 5.0% 99.9% 0.1739
4 mongo-express 90.0% 99.9% 0.9725 30.0% 65.1% 0.5401 90.0% 86.1% 0.9019 70.0% 56.0% 0.6669
5 gitlist 95.0% 99.7% 0.9855 15.0% 90.5% 0.4050 100.0% 98.7% 0.9935 90.0% 18.3% 0.3067
6 joomla 100.0% 99.1% 0.9954 70.0% 51.1% 0.6304 100.0% 99.9% 0.9994 100.0% 94.8% 0.9734
7 Solr 100.0% 99.0% 0.9950 60.0% 47.5% 0.5816 100.0% 94.6% 0.9723 10.0% 99.9% 0.3076
8 OFBiz 100.0% 99.5% 0.9975 52.6% 55.5% 0.6149 94.7% 88.3% 0.9257 26.3% 99.3% 0.5868

Average 97.5% 99.5% 0.9910 54.1% 59.6% 0.5624 87.5% 94.9% 0.9292 58.9% 77.2% 0.5812

TABLE 3. BEHAVIOR FEATURES OF SOME APIS IN PYTHON-DEMO

Feature /solve /status /solve (attacked)

Syscalls recvfrom, sendto, write execve, clone, read, write, ...(15) execve, vfork, read, write, ...(14)
Syscall Categories File, net File, net, process File, net, process

Accessed Directories /tmp/logs /dev, /etc, /usr/lib/locale, ... /tmp/logs, /etc, /usr/lib/locale, ...
Used Fd Types ipv4, file ipv4, file, pipe, pidfd ipv4, file

Executed Processes python3.12 python3.12, dash, grep python3.12, touch

masks another’s anomaly (e.g., attacked /solve).
APIECHO addresses this via API classification (from
API unit partitioning). When similarity is calculated
within the segregated behaviors of two APIs respec-
tively, the PCA visualization (Figure 3(b)) shows a clear
separation. This highlights that isolating API behaviors
makes the /solve anomaly distinct, proving API-
specific analysis effectiveness.

While API classification mitigates inter-API inter-
ference, intra-API behavioral variability poses another
challenge. Normal behavior variation within an API
can differ significantly across APIs, often due to func-
tionality. This varying intra-API variability makes a
single global anomaly detection threshold ineffective,
as a threshold suitable for one API might be too le-
nient or too strict for another. For instance (Figure
3(c)), OFBiz’s rainbowstone API has a normal
behavior point (upper right dot) distinct from its other
normal behaviors. A threshold accommodating this
rainbowstone point would miss an actual attack on
the xmlrpc API (lower right red cross). APIECHO ad-
dresses this by independently normalizing each API’s
anomaly score vectors. This standardizes each API’s
anomaly score distribution, making them uniform de-
spite inherent intra-API variability. Consequently, a
single detection threshold hyperparameter applies ef-
fectively across all APIs, enabling adaptive detection.
Figure 3(d) shows normalized rainbowstone nor-
mal behavior points cluster tightly, enabling successful
xmlrpc attack detection while correctly classifying
rainbowstone’s diverse normal behaviors.

5.4. Robustness against Poisoning Attacks

This section evaluates APIECHO’s robustness
against coordinated or progressive poisoning attacks.

First, for coordinated poisoning attacks, we pre-
pared log datasets mirroring RQ1’s setup but launched
continuous attacks at a frequency higher than normal
access after an initial period. These poisoned logs
were evaluated using RQ1’s procedure. We compared
APIECHO’s performance with ReplicaWatcher, analyz-
ing score changes relative to non-poisoned RQ1 results.
To isolate the contribution of APIECHO’s anomalous
unit discarding mechanism, we included APIECHO-
NoThrow omitting this mechanism for comparison.
Experimental Results. Table 4 shows results, with
∆Score indicating score change from RQ1, whose pos-
itive values indicate raising scores. APIECHO outper-
formed ReplicaWatcher and APIECHO-NoThrow in all
four scenarios. Notably, APIECHO’s score improved
across all scenarios versus RQ1 due to the increased
volume of attack allowing a tighter decision threshold,
enabling tuning to enhance accuracy while maintain-
ing recall. Although this could benefit all methods,
ReplicaWatcher and APIECHO-NoThrow scores signif-
icantly dropped in some scenarios. ReplicaWatcher’s
performance decline under coordinated poisoning stems
from its core detection principle: identifying outliers
via self-comparison within time window batches. With
more than 50% attack behaviors in our simulations, it
often misclassified attacks as benign. To mitigate this,
APIECHO uses a sliding window with an anomalous
unit discarding mechanism, anchoring benign baseline
by dynamically accumulating verified units. Results
support that APIECHO-NoThrow (without this mecha-
nism) showed performance decline in several scenarios,
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Figure 3. Visualization of unit similarities in case study. (Red crosses represents malicious units and green dots represents benign units)

demonstrating the mechanism’s efficacy.
To further assess APIECHO’s robustness, we sim-

ulated progressive poisoning attacks to determine if a
sophisticated, gradual approach could evade detection.
These attacks began with high-frequency operations
mimicking benign behavior (e.g., innocuous code exe-
cution in a code injection context), then gradually intro-
duced more overtly malicious operations with increas-
ing prevalence. The rationale was that if initial, sub-
tle anomalies evaded detection and weren’t discarded
by APIECHO’s anomalous unit discarding mechanism,
they could contaminate the benign behavior reference
model within the detection window, potentially enhanc-
ing subsequent, more harmful attacks.

We conducted progressive poisoning on the OFBiz
scenario, where attacks involve injecting Groovy code
into XML to execute shell commands. Our staged pro-
gressive attack (Table 5) included: innocuous printing,
reading normally accessed files, accessing a payload-
relevant directory, and finally, the original malicious
payload. Stage transitions aligned with APIECHO’s
sliding window (100), allowing a stage’s units to popu-
late the detection window if not immediately discarded
before the next stage commenced. Despite this strategy,
APIECHO maintained 99.9% benign event accuracy,
indicating its anomaly detection is sensitive enough
to detect these progressive attacks at some stage and
mitigate them via its anomalous unit discarding process.

5.5. Adaptation to Application Updates

In this section, we evaluate APIECHO’s ability to
maintain detection performance after application up-
dates. For each application scenario, we create a new
application version by introducing new vulnerabilities
or new normal behaviors. We collect audit logs from
the new version of the application and then append
them to the old version logs obtained in RQ1, thereby
simulating a scenario where the application is dynam-
ically updated while the real-time intrusion detection
is running. We compare the detection performance of
detection methods on the concatenated audit logs. No-
tably, for KAIROS and ProvDetector, we only use the
normal behavior logs from the old version for training.

Experimental Results. Table 6 shows that, compared
to RQ1, baselines had significantly declined detec-
tion performance on multiple datasets. KAIROS and
ProvDetector, trained on old version, struggled to fit
new version normal behavior, causing their performance
degradation. ReplicaWatcher adapts gradually via its
updating time windows, but if a time window simulta-
neously contains normal behaviors from both versions,
one might be misjudged as anomalous, impacting per-
formance. However, on some datasets, baselines’ scores
did not decrease significantly or even improved. Possi-
ble reasons include: 1) small inter-version behavioral
differences allowing old models to fit new versions;
and 2) new version attacks being more obvious to
baseline models. Unlike baselines, APIECHO showed
no significant performance decline in any scenario.
APIECHO clears its detection window upon receiving
an update notification. Results show this mechanism
helps APIECHO refit new version behavior, and thus
improve detection performance.

Whereas previous update experiment allowed
APIECHO time to learn new version behaviors be-
fore attacks, we further tested its window-clearing
mechanism by immediate post-update attacks. Up-
dated version logs from the python-demo scenario
is modified, placing attack behaviors at the very be-
ginning. Theoretically, APIECHO initiates detection
only after its detection window populates with subse-
quent benign units, ensuring accuracy. Results showed
APIECHO successfully detected all attacks, and benign
event accuracy remained undiminished. This demon-
strates APIECHO’s robustness to immediate post-update
attacks, though alerts might be slightly delayed while
its detection window accumulates sufficient requests.

5.6. Ablation Study and Parameter Sensitivity

This section evaluates the impact of specific
APIECHO mechanisms on detection performance via
ablation studies and parameter tuning.
Normalization Mechanism. APIECHO uses normal-
ization for diverse intra-API behavioral variations,
enabling a single detection threshold across APIs.



TABLE 4. PERFORMANCE OF APIECHO AND BASELINE METHODS AGAINST POISONING ATTACKS

# App APIECHO APIECHO-NoThrow ReplicaWatcher

Recall% Accu.% Score ∆Score Recall% Accu.% Score ∆Score Recall% Accu.% Score ∆Score

1 python-demo 100.0% 99.9% 0.9995 0.0005 100.0% 99.9% 0.9995 0.0005 55.0% 51.4% 0.5962 -0.1990
3 juice-shop 100.0% 84.2% 0.9142 -0.0689 100.0% 75.5% 0.8604 -0.1227 55.0% 60.8% 0.6549 0.3026
7 Solr 100.0% 99.9% 0.9995 0.0045 100.0% 95.4% 0.9765 -0.0185 95.0% 55.2% 0.7047 0.1231
8 OFBiz 100.0% 99.9% 0.9995 0.0020 100.0% 99.7% 0.9985 0.0010 75.0% 83.6% 0.8464 0.2315

Average 100.0% 96.0% 0.9782 -0.0155 100.0% 92.6% 0.9587 -0.0349 70.0% 62.8% 0.7006 0.1146

TABLE 5. PAYLOADS OF PROGRESSIVE POISONING EXPERIMENTS

Epoch Groovy Code Payload

1-200 println ’Hello world!’;
201-300 new File(’/usr/src/ofbiz/...’).text;
301-400 new File(’/tmp’).eachFileRecurse {

file -> println file }
401+ touch /tmp/success’.execute();

Section 5.3 qualitatively demonstrated its effective-
ness. To quantify its impact, we evaluated APIECHO-
NoNormalize (normalization disabled) in selected sce-
narios. Results in Table 7 show disabling normalization
has a more pronounced negative impact on applications
with complex functionalities and diverse API behaviors
like OFBiz and Solr, and less impact on simpler
ones. These findings align with Section 5.3 and con-
firm normalization’s benefit, especially with high API
behavioral diversity.
Sequential Features. APIECHO incorporates syscall
sequential features for stealthier attack detection. We
evaluated performance with these disabled (APIECHO-
NoSeq), and the results is shown in Table 7. Un-
like disabling normalization, removing sequential fea-
tures caused more substantial performance degrada-
tion for simpler applications like python-demo and
juice-shop. This might be because their normal
request processing involves shorter, consistent syscall
sequences, making attack-induced novel n-grams or pat-
terns highly distinguishable. Disabling these features re-
moves a critical detection source. Overall, results affirm
sequential features’ positive contribution to detection.
API Classification. APIECHO uses API classification
(Section 5.3) for inter-API normal behavior differences.
Thus, API classification errors could negatively impact
detection. We found API classification errors via pa-
rameter type matching are very rare. Errors mostly stem
from the arbitrary string parameter rule which, lacking
type requirements, might merge APIs differing only by
a URL segment (treated as a parameter). To evaluate
this, we manually introduced API classification errors
in OFBiz scenario. We exported the generated API
catalog and simulated errors by merging groups of APIs
fitting the description. After importing the erroneous
catalog, we observed changes in correctly identified
benign event proportion, as shown in Table 8. Accuracy
dropped from 99.5% to 99.3% with two merged APIs,
and merging up to 24 APIs caused no further decrease

in this setup. This suggests API classification errors
in most evaluated scenarios do not drastically degrade
accuracy. Furthermore, reliable parameter type match-
ing and the arbitrary string parameter rule’s restriction,
which allows at most one of such parameter, make
severe API classification errors unlikely.
Sliding Window Size. APIECHO uses a sliding win-
dow for self-comparison. In each round, the window
includes a new unit, and similarity among all units,
including the new one, is calculated for anomaly de-
tection. Theoretically, a larger window reduces a new
(potentially malicious) unit’s proportional representa-
tion, diminishing its distorting influence on the normal
behavior baseline, which should benefit detection. How-
ever, computational overhead per new unit increases
linearly with window size, as analyzed in Section 4.4.2.
We experimented in the Solr scenario, varying win-
dow size while keeping other parameters constant, ob-
serving benign event identification changes (Table 9).
A window size of 10 showed a significant accuracy
drop versus default (100). At size 50, accuracy was
almost identical to default. A size of 500 was needed for
slight improvement. Considering the overhead of larger
windows (detailed in Section 5.7), the default size of
100 is appropriate.

5.7. Performance Overhead

This section evaluates APIECHO’s performance
overhead. Theoretically, sliding window size is the con-
figurable parameter with the most significant impact.
As detailed in Section 4.4.2, APIECHO’s computational
overhead for detecting each new unit scales linearly
with window size, and so does their maximum memory
footprint. We evaluated the relationship between sliding
window size and APIECHO’s memory consumption
and log detection throughput. Experiments used the
OFBiz scenario (many APIs), where independent slid-
ing windows per API make overall memory consump-
tion changes more pronounced.
Experimental Results. Table 10 details average mem-
ory consumption and log throughput (events/sec) across
varying window sizes. As window size increases, mem-
ory consumption rises and throughput falls. However,
the memory increase largely plateaus beyond a win-
dow size of 100. While throughput decreases, its rate
of decline also diminishes with larger window sizes.



TABLE 6. PERFORMANCE OF APIECHO AND BASELINE METHODS IN UPDATING SCENARIOS

# APIECHO ReplicaWatcher KAIROS ProvDetector

Recall% Accu.% Score ∆ Recall% Accu.% Score ∆ Recall% Accu.% Score ∆ Recall% Accu.% Score ∆

1 100.00% 99.80% 1.00 0.00 80.00% 57.00% 0.70 -0.10 100.00% 99.10% 1.00 0.09 85.00% 54.10% 0.68 -0.28
2 90.00% 100.00% 0.97 -0.03 40.00% 68.00% 0.62 0.04 85.00% 95.30% 0.94 -0.06 75.00% 28.80% 0.43 -0.24
3 87.50% 95.70% 0.95 0.01 90.00% 59.30% 0.73 0.38 75.00% 92.70% 0.89 0.15 17.50% 99.90% 0.46 0.29
41 90.00% 98.90% 0.97 -0.01 30.00% 13.00% 0.20 -0.34 90.00% 55.70% 0.70 -0.20 40.00% 76.20% 0.62 -0.05
51 100.00% 99.80% 1.00 0.01 40.00% 85.30% 0.68 0.28 100.00% 87.50% 0.93 -0.06 0.00% 95.70% 0.00 -0.31
6 100.00% 99.10% 1.00 0.00 60.00% 46.30% 0.57 -0.06 50.00% 99.60% 0.80 -0.20 90.00% 70.90% 0.81 -0.16
7 100.00% 99.40% 1.00 0.00 85.00% 54.00% 0.68 0.10 100.00% 99.00% 1.00 0.02 50.00% 45.60% 0.54 0.23
8 100.00% 99.40% 1.00 0.00 11.10% 96.30% 0.33 -0.28 100.00% 92.70% 0.96 0.04 10.80% 98.50% 0.33 -0.26

Avg. 95.9% 99.0% 0.98 0.00 54.5% 59.9% 0.56 0.00 87.5% 90.2% 0.90 -0.03 45.4% 71.2% 0.48 -0.10
1 No attack in new version of this application.

TABLE 7. ABLATION STUDY RESULTS FOR APIECHO COMPONENTS

# App APIECHO APIECHO-NoNormalize APIECHO-NoSeq

Recall% Accu.% Score Recall% Accu.% Score ∆Score Recall% Accu.% Score ∆Score

1 python-demo 100.0% 99.8% 0.9990 100.0% 99.8% 0.9990 0.0000 20.0% 99.9% 0.4999 -0.4991
3 juice-shop 95.0% 99.2% 0.9831 85.0% 73.7% 0.8180 -0.1651 25.0% 99.9% 0.5713 -0.4118
7 Solr 100.0% 99.0% 0.9950 100.0% 93.2% 0.9648 -0.0302 100.0% 98.4% 0.9919 -0.0030
8 Ofbiz 100.0% 99.5% 0.9975 100.0% 83.1% 0.9077 -0.0898 100.0% 99.1% 0.9955 -0.0020

Average 98.8% 99.4% 0.9936 96.3% 87.5% 0.9224 -0.0713 61.3% 99.3% 0.7646 -0.2290

TABLE 8. ACCURACY IN OFBIZ SCENARIO WITH API
CLASSIFICATION ERRORS

# Merged APIs 0 2 8 12 24
Accuracy% 99.5% 99.3% 99.3% 99.3% 99.3%

TABLE 9. ACCURACY IN SOLR SCENARIO WITH DIFFERENT
WINDOW SIZES

Window Size 10 50 100 200 500
Accuracy% 95.0% 98.3% 98.3% 98.3% 98.4%

Considering these overheads and Section 5.6’s findings
(accuracy stabilizes for window sizes 50-200), a win-
dow size of 100 effectively balances detection accuracy
and resource utilization.

TABLE 10. MEMORY CONSUMPTION AND LOG THROUGHPUT OF
APIECHO WITH DIFFERENT WINDOW SIZES

Window Size 10 50 100 200 500
Memory (GB) 6.45 6.70 6.72 6.72 6.72

Log Throughput 13026 12680 12041 11990 11842

6. Limitation and Discussion

1) Cold Start Problem. Upon initial deployment or
after a reset, APIECHO requires a warm-up period to
build its API Catalog and populate detection windows
with sufficient normal request units. Until an adequate
baseline is established, its anomaly detection is limited,
particularly for low-traffic or infrequently invoked APIs,
prolonging this “cold start” phase. This problem can be
mitigated by involving canary release: the new version

is released first in a relatively trusted environment,
in which APIECHO does its warm-up and gets ready
for a full release. Also, CI/CD could be leveraged to
automatically fill the detection window with requests
collected in testing. Both of these tools are widely used
in production.

2) Reliance on External Notifications for Adapting
to API Changes. When legitimate, significant shifts in
API behavior occur (e.g., due to application upgrades),
APIECHO currently relies on external notifications to
trigger baseline resets. This is due to the challenge of
autonomously distinguishing legitimate changes from
sophisticated, slow poisoning attacks. However, once
notified, APIECHO’s adaptation is automated and more
lightweight than traditional retraining. Integration with
CI/CD systems could automate these notifications.

3) Potential Diversity of Internal Behavior within
the Same API. APIECHO assumes high behavioral
similarity for legitimate requests to the same API end-
point. However, some complex APIs may execute vastly
different internal logic based on input parameters (e.g.,
a generic data processing API with “read,” “write,” or
“transform” operations). This inherent diversity, even
with per-API normalization, can widen the “normal”
behavioral profile, potentially reducing sensitivity to
subtle anomalies for such versatile APIs. Our design
includes a manual override for such cases, which al-
lows operators manually define a set of parameters that
should be treated as part of static API URL. But, how
to automatically analyze and determine the appropri-
ate parameters set that have impact on the API logic
remains a difficult problem.



7. Related Work

Anomaly Detection based on Audit Logs. Research
includes rule-based and machine learning-based meth-
ods. Rule-based systems (e.g., HOLMES [31], MORSE
[32], CONAN [33] and P-Gaussian [34]) offer low false
positives and interpretability but struggle with novel at-
tacks. Machine learning methods (e.g., GNN-based [7],
[8], [10], [11], [35]–[38] and RNN-based [39]) detect
unknown attacks but require resource-intensive retrain-
ing after application updates, hampered by difficulty
obtaining clean post-update data. ReplicaWatcher [6],
a training-free self-comparison approach for microser-
vices, identifies anomalies by comparing inter-replica
behavioral similarity, avoiding retraining. However, its
applicability to monolithic applications is limited by
functional heterogeneity, coarse detection granularity,
lack of adaptive baselines, and vulnerability to coordi-
nated poisoning. APIECHO addresses these issues with
a novel API-level self-comparison strategy, inheriting
the training-free benefit while overcoming limitations
through fine-grained analysis, enhancing adaptability
for monolithic applications.
Unit Partitioning. Precise analysis of individual web
request behavior requires accurately segmenting mixed
system-level audit logs, challenged by “dependency ex-
plosion” in long-running, concurrent web servers [15],
[40]–[46]. Early work like BEEP [40] introduced par-
titioning for provenance. Subsequent methods like MPI
[42], OmegaLog [44] and WinLog [47] made improve-
ments but had limitations with modern asynchronous
models. APIECHO leverages the unit partitioning tech-
nique from TeSec [15], which comprehensively handles
various asynchronous execution models (multi-process,
multi-thread, thread pools, event loops) in web applica-
tions. TeSec automatically partitions low-level syscalls
to specific web requests, enabling the fine-grained re-
quest behavior extraction crucial for APIECHO.
API Classification. API identification methods vary.
Some infer APIs from browser behavior (e.g., Akita
Software Chrome Extension [48]), others use existing
specifications or patterns for probing (e.g., ZAP [49],
Kiterunner [50]). A third category employs passive net-
work traffic monitoring (e.g., Cloudflare’s API gateway
[51], Akto [14]). APIECHO’s API classification engine
is inspired by passive discovery approaches (similar to
Akto) and introduces a novel trie-based implementation
for API matching and classification, with mechanisms
to adapt to evolving APIs.

8. Conclusion

We propose APIECHO, a novel, training-free web
server intrusion detection method. APIECHO enhances
detection accuracy and robustness for monolithic ap-
plications by comparing individual requests targeting
the same API, rather than entire replicas. Its design
incorporates dynamic API classification, fine-grained

request behavior extraction via unit partitioning, per-
API adaptive normalization, and an anti-poisoning slid-
ing window update mechanism. These features al-
low APIECHO to operate without extensive training
data, improve applicability to monolithic systems, offer
finer detection granularity, utilize adaptive comparison
benchmarks, and effectively resist coordinated poison-
ing attacks. Experiments using 16 real-world web appli-
cations and vulnerabilities demonstrated that APIECHO
adapts to application updates without retraining, ex-
hibits strong resilience against coordinated poisoning,
and outperforms the state-of-the-art in both training-free
and pre-training-based methods. APIECHO achieved
attack recall rates exceeding 90% and benign event
detection accuracy over 99%, with low overhead, pro-
cessing more than 12000 log events per second while
consuming less than 7GB memory. Our implementation
has been made open source.
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Appendix A.
API Parameter Types and Validation Rules

Table 11 listed parameter types used by API Cata-
log, and their validation rules used in template gener-
alization and matching in the trie.

TABLE 11. PARAMETER TYPES AND VALIDATION RULES IN API
TEMPLATES

Type Validation Rule

Integer Value is a digit string
Float Value is not a digit string and convertible to floating number
Null Value is “null” or “none”, ignoring cases

Boolean Value is “true” or “false”, ignoring cases
Hex String Value is a hexadecimal string whose length more than 7

Email Validated by email-validator [52]
Url Validated by python’s urllib standard library

UUID Validated by python’s uuid standard library
IP Validated by python’s ipaddress standard library

Static File Value can be splitted as 2 parts by “.”, and the second part
is in a extension names list

Appendix B.
Description of Unit Features

Table 12 gives a more detailed description of the
features extracted from request units for anomaly de-
tection.

TABLE 12. FEATURES EXTRACTED FROM UNITS

Category Name Description

Syscall
syscalls Set of used syscalls

syscall categories Categories of used syscalls: Net, File, Memory
syscall sequenced Sequence of used syscalls

File Descriptors

filenames Names of accessed files
directories Parent directories of accessed files
fd types Types of used file descriptors: File, IPv4, IPv6

n ips Number of distinct accessed IPs
n ports Number of distinct used ports

Process proc paths Program paths executed by application
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Appendix C.
Meta-Review

The following meta-review was prepared by the
program committee for the 2026 IEEE Symposium
on Security and Privacy (S&P) as part of the review
process as detailed in the call for papers.

C.1. Summary

This paper presents APIEcho, a novel intrusion de-
tection system tailored for monolithic web applications
that overcomes the limitations of rule-based systems
and learning-based models. APIEcho performs anomaly
detection on individual API endpoints based on the
insight that legitimate requests exhibit highly similar
behavior patterns.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Estab-

lished Field
• Establishes a New Research Direction

C.3. Reasons for Acceptance

1) The paper establishes a new direction for web
application intrusion detection by building profiles
for individual endpoints, overcoming the limita-
tions of prior approaches.

2) The evaluation demonstrates that the approach
works well in real-world scenarios.

C.4. Noteworthy Concerns

1) The paper could have done more to highlight the
limitations of the approach when handling complex
APIs.

2) The paper should clarify how the comparative eval-
uation setup favors ReplicaWatcher.

3) The paper should provide more details on how logs
are collected for analysis.

4) The evaluation methodology of comparing
APIEcho to prior work that could in principle
have been applied at an API endpoint level might
underreport the efficacy of baseline techniques.

5) The technique is not truly training-less as claimed
since concept drift must be manually handled by
a human operator, leading to a retraining phase.

Appendix D.
Response to the Meta-Review

We thank the shepherd and reviewers for their con-
structive feedback. We provide additional context for
the noteworthy concerns.

1) On handling complex APIs: Our behavioral sim-
ilarity assumption is most applicable to single-
responsibility APIs. For complex, polymorphic
endpoints (e.g., where a parameter like “?ac-
tion=...” dictates behavior), our design allows oper-
ators to define such parameters as part of the static
API key. This partitions a single endpoint into
distinct logical sub-APIs for independent analysis.
While fully automatic discovery of such param-
eters is an open problem, this provides a robust
solution for real-world deployments.

2) On the ReplicaWatcher evaluation setup: The
comparison was designed to highlight the chal-
lenges of inter-replica comparison in monolithic
settings. To create a strong baseline, the exper-
iment was designed in ReplicaWatcher’s favor:
attack traffic was confined to a single replica per
window, ensuring a clear majority of benign repli-
cas for comparison. The performance gap, even
under these ideal conditions, underscores the ne-
cessity of our intra-API approach.

3) On log collection details: Our methodology builds
upon the reproducible framework from AutoLa-
bel [28]. The lightweight instrumentation (e.g.,
middleware for FastAPI) inserts delimiters by writ-
ing to “/dev/null”, a standard practice to capture
contextual IDs in audit logs without altering ap-
plication I/O.

4) On the efficacy of baseline techniques: A core
contribution is our shift in granularity to per-
request, intra-API analysis. Prior methods were not
designed for this granularity. Applying them at this
level would require significant re-engineering (e.g.,
new feature extraction), thus constituting a new
research direction rather than a direct comparison
of existing systems.

5) On the “training-less” claim: Our use of
“training-less” signifies the absence of large-scale,
offline pre-training, the primary burden of tradi-
tional ML systems. Adapting to concept drift is a
lightweight, online baseline reset, not a “retraining
phase.” This process can be fully automated in
CI/CD pipelines, where a new deployment trig-
gers a reset and “warm-up” using test or canary
traffic, which is fundamentally different from con-
ventional model retraining.
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